精英家教網 > 初中數學 > 題目詳情
知識遷移
   當a>0且x>0時,因為(
x
-
a
x
)
2
≥0
,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當x=
a
)是取等號).
   記函數y=x+
a
x
(a>0,x>0).由上述結論可知:當x=
a
時,該函數有最小值為2
a

直接應用
   已知函數y1=x(x>0)與函數y2=
1
x
(x>0),則當x=______時,y1+y2取得最小值為______.
變形應用
   已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數為0.001.設該汽車一次運輸的路程為x千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?
直接應用:
∵函數y=x+
a
x
(a>0,x>0),由上述結論可知:當x=
a
時,該函數有最小值為2
a

∴函數y1=x(x>0)與函數y2=
1
x
(x>0),則當x=1時,y1+y2取得最小值為2.
變形應用
已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),
y2
y1
=
(x+1) 2+4
x+1
=(x+1)+
4
x+1
的最小值為:2
4
=4,
∵當(x+1)+
4
x+1
=4時,
整理得出:x2-2x+1=0,
解得:x1=x2=1,
檢驗:x=1時,x+1=2≠0,
故x=1是原方程的解,
y2
y1
的最小值為4,相應的x的值為1;
實際應用
設行駛x千米的費用為y,則由題意得,y=360+1.6x+0.001x2
故平均每千米的運輸成本為:
y
x
=0.001x+
360
x
+1.6=0.001x+
0.36
0.001x
+1.6,
由題意可得:當0.001x=
0.36
時,
y
x
取得最小,此時x=600km,
此時
y
x
≥2
0.36
+1.6=2.8,
即當一次運輸的路程為600千米時,運輸費用最低,最低費用為:2.8元.
答:汽車一次運輸的路程為600千米,平均每千米的運輸成本最低,最低是2.8元.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•鹽城)知識遷移
   當a>0且x>0時,因為(
x
-
a
x
)
2
≥0
,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當x=
a
)是取等號).
   記函數y=x+
a
x
(a>0,x>0).由上述結論可知:當x=
a
時,該函數有最小值為2
a

直接應用
   已知函數y1=x(x>0)與函數y2=
1
x
(x>0),則當x=
1
1
時,y1+y2取得最小值為
2
2

變形應用
   已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數為0.001.設該汽車一次運輸的路程為x千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?

查看答案和解析>>

科目:初中數學 來源:2013年5月中考數學模擬試卷(38)(解析版) 題型:解答題

知識遷移
   當a>0且x>0時,因為,所以x-+≥0,從而x+(當x=)是取等號).
   記函數y=x+(a>0,x>0).由上述結論可知:當x=時,該函數有最小值為2
直接應用
   已知函數y1=x(x>0)與函數y2=(x>0),則當x=______時,y1+y2取得最小值為______.
變形應用
   已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),求的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數為0.001.設該汽車一次運輸的路程為x千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?

查看答案和解析>>

科目:初中數學 來源:2013年湖南省長沙市中考數學模擬試卷(四)(解析版) 題型:解答題

知識遷移
   當a>0且x>0時,因為,所以x-+≥0,從而x+(當x=)是取等號).
   記函數y=x+(a>0,x>0).由上述結論可知:當x=時,該函數有最小值為2
直接應用
   已知函數y1=x(x>0)與函數y2=(x>0),則當x=______時,y1+y2取得最小值為______.
變形應用
   已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),求的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數為0.001.設該汽車一次運輸的路程為x千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?

查看答案和解析>>

科目:初中數學 來源:2012年江蘇省鹽城市中考數學試卷(解析版) 題型:解答題

知識遷移
   當a>0且x>0時,因為,所以x-+≥0,從而x+(當x=)是取等號).
   記函數y=x+(a>0,x>0).由上述結論可知:當x=時,該函數有最小值為2
直接應用
   已知函數y1=x(x>0)與函數y2=(x>0),則當x=______時,y1+y2取得最小值為______.
變形應用
   已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),求的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數為0.001.設該汽車一次運輸的路程為x千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?

查看答案和解析>>

同步練習冊答案