如圖,在平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(4,0)、(4,3),動點M、N分別從點O、B同時出發(fā),以每秒1個單位的速度運動,其中點M沿OA向終點A運動,點N沿BC向終點C運動,過點N作NP⊥BC,交AC于點P,連接MP,當兩動點運動了t秒時.解答下列問題:
(1)點P的坐標為(
4-t
4-t
,
3
4
t
3
4
t
 ).(用含t的式子表示);
(2)若△MPA的面積為S,當S=
3
2
時,求t的值;
(3)若點Q在y軸上,當S=
3
2
且△QAN為等腰三角形時,求直線AQ的解析式.
分析:(1)由BN=t,根據(jù)BC-BN表示出CN,即為N的橫坐標,由三角形CNP與三角形CBA相似,根據(jù)相似得比例列出關系式,表示出NP,由AB-NP求出P的縱坐標,即可確定出P的坐標;
(2)三角形APM以AM為底,根據(jù)OA-OM表示出AM,高為P的縱坐標,利用三角形的面積公式列出關于t的方程,求出方程的解即可得到此時t的值;
(3)根據(jù)(2)得出此時N為BC的中點,設Q(0,y),根據(jù)勾股定理分別表示出AQ2,QN2,AN2,由三角形QAN為等腰三角形,分三種情況考慮:①若AQ=AN;②若AQ=QN;③若QN=AN,分別求出對應y的值,確定出Q的坐標,根據(jù)Q的坐標設出直線AQ方程,將A坐標代入即可確定出直線AQ的解析式.
解答:解:(1)延長NP,交OA于點E,可得出PE⊥OA,
∵BN=t,BC=4,
∴CN=BC-BN=4-t,
∵∠CNP=∠CBA=90°,∠NCP=∠BCA,
∴△CNP∽△CBA,
CN
CB
=
NP
AB
,即
4-t
4
=
NP
3
,
∴NP=
3
4
(4-t)=3-
3
4
t,
∴PE=NE-NP=3-(3-
3
4
t)=
3
4
t,
則P的坐標為(4-t,
3
4
t);

(2)在△MPA中,MA=4-t,MA上的高PE=
3
4
t,
∴S=S△MPA=
1
2
(4-t)•
3
4
t,又S=
3
2
,
1
2
(4-t)•
3
4
t=
3
2
,
解得:t1=t2=2,
則當t=2時,S=
3
2
;

(3)由(2)可知:S=
3
2
時,t=2,此時點N在BC的中點處,
設Q(0,y),則AQ2=OA2+OQ2=42+y2,QN2=CN2+CQ2=22+(3-y)2,AN2=AB2+BN2=32+22,
由△QAN為等腰三角形,分三種情況考慮:
①若AQ=AN,即42+y2=32+22,此時方程無解;
②若AQ=QN,即42+y2=22+(3-y)2,解得:y=-
1
2
;
③若QN=AN,即22+(3-y)2=32+22,解得:y1=0,y2=6,
∴Q1(0,-
1
2
),Q2(0,0),Q3(0,6),
當Q為(0,-
1
2
)時,設直線AQ的解析式為y=kx-
1
2
,
將A(4,0)代入得k=
1
8
,此時直線AQ的解析式為y=
1
8
x-
1
2
;
當Q為(0,0)時,A、Q兩點均在x軸上,此時直線AQ的解析式為y=0;
當Q為(0,6)時,Q、N、A在同一直線上,△QAN不存在,故舍去,
綜上,直線AQ的解析式為y=
1
8
x-
1
2
或y=0.
故答案為:4-t;
3
4
t.
點評:此題考查了一次函數(shù)綜合題,涉及的知識有:相似三角形的判定與性質(zhì),坐標與圖形性質(zhì),勾股定理,待定系數(shù)法確定一次函數(shù)解析式,利用了分類討論的思想,分類討論時不重不漏,考慮問題要全面.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案