【題目】如圖,AB 為圓O的直徑, PQ切圓O于T , AC⊥PQ于C ,交圓O于 D .
(1)求證: AT 平分∠BAC ;
(2)若 AD =2 , TC= ,求圓O的半徑.
【答案】(1)證明見解析;(2)2.
【解析】
試題分析:(1)PQ切⊙O于T,則OT⊥PC,根據(jù)AC⊥PQ,則AC∥OT,要證明AT平分∠BAC,只要證明∠TAC=∠ATO就可以了.
(2)過點O作OM⊥AC于M,則滿足垂徑定理,在直角△AOM中根據(jù)勾股定理就可以求出半徑OA.
試題解析:(1)連接OT;
∵PQ切⊙O于T,
∴OT⊥PQ,
又∵AC⊥PQ,
∴OT∥AC,
∴∠TAC=∠ATO;
又∵OT=OA,
∴∠ATO=∠OAT,
∴∠OAT=∠TAC,
即AT平分∠BAC.
(2)過點O作OM⊥AC于M,
∴AM=MD==1;
又∠OTC=∠ACT=∠OMC=90°,
∴四邊形OTCM為矩形,
∴OM=TC=,
∴在Rt△AOM中,
AO===2;
即⊙O的半徑為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書籍是人類進(jìn)步的階梯,聯(lián)合國教科文組織把每年的4月23日確定為“世界讀書日”,某校為了了解該校學(xué)生一個學(xué)期閱讀課外書籍的情況,在全校范圍內(nèi)隨機(jī)對100名學(xué)生進(jìn)行了問卷調(diào)查,根據(jù)調(diào)查的結(jié)果,繪制了統(tǒng)計圖表的一部分:一個學(xué)期平均一天閱讀課外書籍所有時間統(tǒng)計表
時間(分鐘) | 20 | 40 | 60 | 80 | 100 | 120 |
人數(shù) | 43 | 31 | 15 | 5 | 4 | 2 |
請你根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖1、圖2;
(2)這100名學(xué)生一個學(xué)期平均每人閱讀課外書籍多少本?若該校共有1200名學(xué)生,請你估計這個學(xué)校學(xué)生一個學(xué)期閱讀課外書籍共多少本?
(3)根據(jù)統(tǒng)計表,求一個學(xué)期平均一天閱讀課外書籍所用時間的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)600個旅游紀(jì)念品,進(jìn)價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當(dāng)增加銷量,決定降價銷售(根據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進(jìn)價),單價降低x元銷售銷售一周后,商店對剩余旅游紀(jì)念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀(jì)念品共獲利1250元,問第二周每個旅游紀(jì)念品的銷售價格為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種文具,進(jìn)價為5元/件.售價為6元/件時,當(dāng)天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當(dāng)天的銷售量就減少5件.設(shè)當(dāng)天銷售單價統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價所在的范圍;
(3)若每件文具的利潤不超過,要想當(dāng)天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的兩直角邊,分別在軸的負(fù)半軸和軸的正半軸上,為坐標(biāo)原點,,兩點的坐標(biāo)分別為、,拋物線經(jīng)過點,且頂點在直線上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若是由沿軸向右平移得到的,當(dāng)四邊形是菱形時,試判斷點和點是否在該拋物線上,并說明理由;
(3)在(2)的條件下,若點是所在直線下方拋物線上的一個動點,過點作平行于軸交于.設(shè)點的橫坐標(biāo)為,的長度為.求與之間的函數(shù)關(guān)系式,寫出自變量的取值范圍,并求取最大值時,點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:若點在某一個函數(shù)的圖象上,且點的橫縱坐標(biāo)相等,我們稱點為這個函數(shù)的“好點”.若關(guān)于的二次函數(shù)對于任意的常數(shù)恒有兩個“好點”,則的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線交軸于,兩點(點在點的左邊),交軸正半軸于點.
(1)如圖1,當(dāng)時.
①直接寫出點,,的坐標(biāo);
②若拋物線上有一點,使,求點的坐標(biāo).
(2)如圖2,平移直線交拋物線于,兩點,直線與直線交于點,若點在定直線上運動,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,切于點,連結(jié)交于點,是上一點,且與點在異側(cè),連結(jié)
(1)求證:;
(2)若,,則的長為(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)(為常數(shù),)的圖像與軸、軸分別相交于點,半徑為4的⊙與軸正半軸相交于點,與軸相交于點,點在點上方.
(1)若直線與弧有兩個交點.
①求的度數(shù);
②用含的代數(shù)式表示,并直接寫出的取值范圍;
(2)設(shè),在線段上是否存在點,使?若存在,請求出點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com