【題目】小李以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完;銷售金額與賣西瓜千克數(shù)之間的關(guān)系如圖所示,那么小李賺了_________.元.
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)平面內(nèi)一點到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R.對于一個點與等邊三角形,給出如下定義:滿足r≤d≤R的點叫做等邊三角形的中心關(guān)聯(lián)點. 在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣ ,﹣1),C( ,﹣1).
(1)已知點D(2,2),E( ,1),F(xiàn)(﹣ ,﹣1).在D,E,F(xiàn)中,是等邊△ABC的中心關(guān)聯(lián)點的是;
(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°. ①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點;(直接寫出答案,不需過程)
(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為 .當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關(guān)聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價格相同,“春節(jié)期間”,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為(元),在乙園所需總費用為(元),、與之間的函數(shù)關(guān)系如圖所示,折線OAB表示與之間的函數(shù)關(guān)系.
(1)甲采摘園的門票是 元,兩個采摘園優(yōu)惠前的草莓單價是每千克 元;
(2)當>10時,求與的函數(shù)表達式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若數(shù)a使關(guān)于x的分式方程 + =4的解為正數(shù),且使關(guān)于y的不等式組 的解集為y<﹣2,則符合條件的所有整數(shù)a的和為( )
A.10
B.12
C.14
D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;②小明通過觀察、實驗,提出猜想:在點P,Q運動的過程中,始終有PA=PM,小明把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證PA=PM,只需證△APM是等邊三角形.
想法2:在BA上取一點N,使得BN=BP,要證PA=PM,只需證△ANP≌△PCM.……
請你參考上面的想法,幫助小明證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點C是BM延長線上一點,連接AC.
(1)如圖1,若AB=3 ,BC=5,求AC的長;
(2)如圖2,點D是線段AM上一點,MD=MC,點E是△ABC外一點,EC=AC,連接ED并延長交BC于點F,且點F是線段BC的中點,求證:∠BDF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)據(jù)1,3,5,12,a,其中整數(shù)a是這組數(shù)據(jù)的中位數(shù),則該組數(shù)據(jù)的平均數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】銷售有限公司到某汽車制造有限公司選購A、B兩種型號的轎車,用300萬元可購進A型轎車10輛,B型轎車15輛;用300萬元可購進A型轎車8輛,B型轎車18輛.
(1)求A、B兩種型號的轎車每輛分別多少元?
(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準備用不超過400萬元購進A、B兩種型號轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了若干居民的月均用水量(單位:t),并繪制了不完整的樣本的頻數(shù)分布表的頻數(shù)分布直方圖(如圖)
根據(jù)上述圖表回答下列問題:
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 0.04 |
3≤x<4 | 12 | 0.24 |
4≤x<5 | ||
5≤x<6 | 10 | 0.2 |
6≤x<7 | 0.12 | |
7≤x<8 | 3 | 0.06 |
8≤x<9 | 2 | 0.04 |
(1)小明同學共調(diào)查了多少戶居民的月均用水量;
(2)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;
(3)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的等用水量家庭大約有多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com