【題目】已知關(guān)于x的一元二次方程x2﹣(2a1x+a2+20有兩個(gè)不相等的實(shí)數(shù)根.

1)求實(shí)數(shù)a的取值范圍,并求a的最大整數(shù);

2x1可能是方程的一個(gè)根嗎?若是,請(qǐng)求出它的另一個(gè)根,若不是,請(qǐng)說明理由.

【答案】(1)a<﹣a的最大整數(shù)是﹣2;(2x1不可能是方程的一個(gè)根.

【解析】

1)由根的判別式大于零可得答案;(2)將x=1代入方程得到關(guān)于a的方程,再根據(jù)根的判別式即可判斷.

解:(1)根據(jù)題意知,=(2a124a2+2)>0

整理,得:﹣4a70,

解得:a<﹣,

a的最大整數(shù)是﹣2;

2)將x1代入方程,得:1﹣(2a1+a2+20,

整理,得:a22a+40,

=(﹣224×1×4=﹣120,

∴方程無(wú)解,

x1不可能是方程的一個(gè)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;

(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點(diǎn)A的圓的切線.

請(qǐng)回答:該畫圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EBC邊上,點(diǎn)FDC的延長(zhǎng)線上,且∠DAE=∠F

(1) 求證:△ABE∽△ECF;

(2) AB=5,AD=8,BE=2,求FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《中學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定學(xué)生體質(zhì)健康等級(jí)標(biāo)準(zhǔn)為:90分及以上為優(yōu)秀;80分~89分為良好;60分~79分為及格;59分及以下為不及格. 某校從九年級(jí)學(xué)生中隨機(jī)抽取了的學(xué)生進(jìn)行了體質(zhì)測(cè)試,得分情況如下圖.

1)在抽取的學(xué)生中不及格人數(shù)所占的百分比是 ,它的圓心角度數(shù)為 .

2)小明按以下方法計(jì)算出抽取的學(xué)生平均得分是:. 根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí)判斷小明的計(jì)算是否正確,若不正確,請(qǐng)計(jì)算正確結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACBα,將ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)到ABC的位置,使AABC,設(shè)旋轉(zhuǎn)角為β,則αβ滿足關(guān)系( 。

A.α+β90°B.α+2β180°C.2α+β180°D.α+β180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACBC,∠ACB90°.點(diǎn)P在是平面內(nèi)不與點(diǎn)AB,C重合的任意一點(diǎn),連接PC,將線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段DC,連接ADBP

1)觀察猜想

當(dāng)點(diǎn)P在直線AC上時(shí),如圖1,線段BPAD的數(shù)量關(guān)系是   ,直線BP與直線AD的位置關(guān)系是   

2)拓展探究

當(dāng)點(diǎn)P不在直線AC上時(shí),(1)中的數(shù)量關(guān)系和位置關(guān)系還成立嗎?并就圖2的情形說明理由;

3)解決問題

若點(diǎn)MN分別是ABAC的中點(diǎn),點(diǎn)P在直線MN上,請(qǐng)直接寫出點(diǎn)A,P,D在同一條直線上時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購(gòu)物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC中,∠ACB90°,BC6,∠A30°,將ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α,(α≤60°),得到DEC,設(shè)直線DE與直線AB相交于點(diǎn)P.

1)如圖1,連接PC,求證:PC平分∠EPA

2)如圖2,在ABC旋轉(zhuǎn)過程中,連接BE,當(dāng)BCE的面積為9時(shí),求α的度數(shù).

3)如圖3,當(dāng)點(diǎn)P在邊AB上時(shí),問:PE+PB是否為定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村計(jì)劃在新農(nóng)村改造過程中,擬籌資金2000元,計(jì)劃在一塊上、下底分別為10米、20米的梯形空地上種植花草(如圖所示,),村委會(huì)想在地帶與地帶種植單價(jià)為10元的太陽(yáng)花,當(dāng)地帶種滿花后,已經(jīng)花了500元,請(qǐng)你計(jì)算一下,若繼續(xù)在地帶種植同樣的太陽(yáng)花,資金是否夠用?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案