分析 (1)根據(jù)等腰三角形的性質(zhì)得到∠B=∠ACB=30°,求得∠ACP=30°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)過(guò)C作CE⊥AP于E,根據(jù)等邊三角形的性質(zhì)得到CD=CE,根據(jù)全等三角形的性質(zhì)得到OC=OP,由等邊三角形的判定即可得到結(jié)論;
(3)在AB上找到Q點(diǎn)使得AQ=OA,則△AOQ為等邊三角形,根據(jù)求得解實(shí)現(xiàn)的性質(zhì)得到PA=BQ,求得AC=AO+AP,即可得到結(jié)論.
解答 解:(1)∵AB=AC=2,∠BAC=120°,
∴∠B=∠ACB=30°,
∵∠OCP=60°,
∴∠ACP=30°,
∵∠CAP=180°-∠BAC=60°,
∵AD⊥BC,
∴∠DAC=60°,
在△ADC與△APC中,$\left\{\begin{array}{l}{∠PAC=∠DAC}\\{AC=AC}\\{∠ACD=∠ACP}\end{array}\right.$,
∴△ACD≌△ACP,
∴CD=CP,
∴△PCO是等邊三角形;
故答案為:AD;
(2)△OPC還滿足(1)的結(jié)論,
理由:過(guò)C作CE⊥AP于E,
∵∠CAD=∠EAC=60°,
AD⊥CD,
∴CD=CE,
∴∠DCE=60°,
∴∠OCE=∠PCE,
在△OCD與△PCE中,$\left\{\begin{array}{l}{∠PEC=∠ODC=90°}\\{∠OCD=∠PCE}\\{CD=CE}\end{array}\right.$,
∴△OCD≌△PCE,
∴OC=OP,
∴△OPC是等邊三角形;
(3)在AB上找到Q點(diǎn)使得AQ=OA,則△AOQ為等邊三角形,
則∠BQO=∠PAO=120°,
在△BQO和△PAO中,$\left\{\begin{array}{l}{∠BQO=∠PAO}\\{∠ABO=∠APO}\\{OB=OP}\end{array}\right.$,
∴△BQO≌△PAO(AAS),
∴PA=BQ,
∵AB=BQ+AQ,
∴AC=AO+AP,
∵AO=x,AP=y,
∴y=-x+2,(0<x<2);
點(diǎn)評(píng) 本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中求證△BQO≌△PAO是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com