【題目】△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,AB=8,BC=15,CA=17,則下列結(jié)論不正確的是(
A.△ABC是直角三角形,且AC為斜邊
B.△ABC是直角三角形,且∠ABC=90°
C.△ABC的面積是60
D.△ABC是直角三角形,且∠A=60°

【答案】D
【解析】解:∵AB=8,BC=15,CA=17, ∴AB2=64,BC2=225,CA2=289,
∴AB2+BC2=CA2 ,
∴△ABC是直角三角形,因?yàn)椤螧的對(duì)邊為17最大,所以AC為斜邊,∠ABC=90°,
∴△ABC的面積是 ×8×15=60,
故錯(cuò)誤的選項(xiàng)是D,
故選D.
【考點(diǎn)精析】本題主要考查了勾股定理的逆定理的相關(guān)知識(shí)點(diǎn),需要掌握如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(a0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.

(1)求該拋物線的解析式;

(2)若點(diǎn)E為x軸下方拋物線上的一動(dòng)點(diǎn),當(dāng)S△ABE=S△ABC時(shí),求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使BAP=CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市為迎接省運(yùn)會(huì),要將某一城市美化工程招標(biāo),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),M與y軸相切于點(diǎn)C,與x軸相交于A、B兩點(diǎn).

(1)則點(diǎn)A、B、C的坐標(biāo)分別是A(__,__),B(__,__),C(__,__);

(2)設(shè)經(jīng)過(guò)A、B兩點(diǎn)的拋物線解析式為,它的頂點(diǎn)為F,求證:直線FA與M相切;

(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,且點(diǎn)P在x軸的上方,使PBC是等腰三角形.如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各題正確的是(
A.由7x=4x﹣3移項(xiàng)得7x﹣4x=3
B.由 =1+ 去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括號(hào)得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7去括號(hào)、移項(xiàng)、合并同類項(xiàng)得x=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)(x0)的圖象與直線y=x交于點(diǎn)M,AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A,B,四邊形OAMB的面積為6.

(1)求k的值;

(2)點(diǎn)P在反比例函數(shù)(x0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點(diǎn)E,F(xiàn),問(wèn)是否存在點(diǎn)E,使得PE=PF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式

(2)若α為銳角,tanα=,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積;

(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為:1?若能,求點(diǎn)P的坐標(biāo);若不能,試說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x2+2(m-3)x+16是完全平方式,則m的值等于(

A. 3 B. -5 C. -71 D. 7-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CAB的延長(zhǎng)線上,CDO相切于點(diǎn)D,CEAD,交AD的延長(zhǎng)線于點(diǎn)E

1)求證:BDC=A

2)若CE=4,DE=2,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案