【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個數(shù)是_____.
【答案】①②③④。
【解析】
由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FBFG=S四邊形CBFG,②正確;
由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應(yīng)邊成比例,得出④正確.
解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,
,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,
∴∠CBF=90°,S△FAB=FBFG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴ADFE=AD2=FQAC,④正確;
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4的等邊三角形,點D是AB上異于A,B的一動點,將△ACD繞點C逆時針旋轉(zhuǎn)60°得△BCE,則旋轉(zhuǎn)過程中△BDE周長的最小值_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關(guān)系.直至水溫降至30℃,飲水機關(guān)機.飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當(dāng)天上午的
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點P為弧BC上一動點,求證:PA=PB+PC.
下面給出一種證明方法,你可以按這一方法補全證明過程,也可以選擇另外的證明方法.
證明:在AP上截取AE=CP,連接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圓周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點P為弧BC上一動點,求證:PA=PC+ PB.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點P為弧BC上一動點,請?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,為直線上任意一點,給出以下判斷:
①若點到,距離相等,且,則;②若且,則;③若,則;④若,且,則.其中正確的是________(把所有正確結(jié)論序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△DBE是繞點B旋轉(zhuǎn)的兩個相似三角形,其中∠ABC與∠DBE、∠A與∠D為對應(yīng)角.
(1)如圖①,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點B、C、D在同一條直線上的位置時,請直接寫出線段AD與線段EC的關(guān)系;
(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個三角形旋轉(zhuǎn)到如圖②的位置時,試確定線段AD與線段EC的關(guān)系,并說明理由;
(3)若△ABC和△DBE為如圖③的兩個三角形,且∠ACB=α,∠BDE=β,在繞點B旋轉(zhuǎn)的過程中,直線AD與EC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E為⊙O的直徑AB上一個動點,點C、D在下半圓AB上(不含A、B兩點),且∠CED=∠OED=60°,連OC、OD
(1)求證:∠C=∠D;
(2)若⊙O的半徑為r,請直接寫出CE+ED的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4m時,拱頂(拱橋洞的最高點)離水面2m,當(dāng)水面下降1m時,水面的寬度為( )
A.3 B.2 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C,D在⊙O上,且AB=5,BC=3.
(1) 求sin∠BAC的值;
(2) 如果OE⊥AC, 垂足為E,求OE的長;
(3) 求tan∠ADC的值.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com