【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上.點O從點D出發(fā),沿DC向點C勻速運動,速度為3cm/s,以O(shè)為圓心,1cm半徑作⊙O.點P與點D同時出發(fā),設(shè)它們的運動時間為t(單位:s) (0≤t≤).

(1)如圖1,連接DQ,若DQ平分∠BDC,則t的值為   s;

(2)如圖2,連接CM,設(shè)△CMQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

(3)在運動過程中,當(dāng)t為何值時,⊙O與MN第一次相切?

【答案】11s; 2S=t2+t;(3.

【解析】試題分析:1)由DQC≌△DQP,推出DP=DC=6,在RtADB中,BD=10,推出PB=4即可解決問題;

2過點MMHBC于點H證明HMQ∽△PQB,,=,得MH=t,即可求得CMQ的面積;

3設(shè)⊙OMN相切于點E,連接OE,作OFBD于點F,可證得DFO∽△DCB,

由此即可解得:t值.

試題解析:(1∵四邊形ABCD為矩形,

AB=CD=6cmAD=BC=8cm,

DB=10cm

∵四邊形PQMN為正方形,

∴∠BPQ=C=90°,

∵∠PBQ=CBD,

BPQ∽△BCD

==,即==,

BQ=5t、PQ=3t,

CQ=BC﹣BQ=8﹣5t

DQ平分∠BDC,

QP=QC,即3t=8﹣5t

解得:t=1,

故答案為:1;

2)如圖a,過點MMHBC于點H

∴∠MHQ=QPB=MQP=90°,

則∠HMQ+HQM=PQB+HQM=90°,

∴∠HMQ=PQB,

∴△HMQ∽△PQB

=,即=

MH=t,

S=×85tt=t2+t;

3)如圖b,設(shè)⊙OMN相切于點E,連接OE,作OFBD于點F,

則四邊形OENF為矩形,

OE=FN=1,DFO=C=90°,

∵∠FDO=CDB,

∴△DFO∽△DCB

,即,

解得:t=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是(

A. 方程5x2=x有兩個不相等的實數(shù)根

B. 方程x2﹣8=0有兩個相等的實數(shù)根

C. 方程2x2﹣3x+2=0有兩個整數(shù)根

D. 當(dāng)k時,方程(k1x2+2x3=0有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對平面直角坐標(biāo)系中的點Px,y),定義d=|x|+|y|,我們稱dPx,y)的幸福指數(shù).對于函數(shù)圖象上任意一點Pxy),若它的幸福指數(shù)d≥1恒成立,則稱此函數(shù)為幸福函數(shù),如二次函數(shù)y=x2+1就是一個幸福函數(shù),理由如下:設(shè)Pxy)為y=x2+1上任意一點,d=|x|+|y|=|x|+|x2+1|,|x|≥0|x2+1|=x2+1≥1d≥1y=x2+1是一個幸福函數(shù).

1)若點P在反比例函數(shù)y=的圖象上,且它的幸福指數(shù)d=2,請直接寫出所有滿足條件的P點坐標(biāo);

2)一次函數(shù)y=﹣x+1是幸福函數(shù)嗎?請判斷并說明理由;

3)若二次函數(shù)y=x22m+1x+m2+mm0)是幸福函數(shù),試求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平分,點在射線上,、分別是射線、上的動點(、不與點重合),連接交射線于點.設(shè).

1)如圖1,若,則:①______;②當(dāng)時,______.

2)如圖2,若,垂足為,則是否存在這樣的的值,使得中存在兩個相等的角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=4.BM平分∠ABCAC于點M,點D為射線BM上一點,以點B為旋轉(zhuǎn)中心將線段BD逆時針旋轉(zhuǎn)60°得到線段BE,連接DE.交射線BA于點F,連接AD、AE.當(dāng)以AD、M為頂點的三角形與AEF全等時,DE的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為12,E,F分別是邊AD,BC上的點,將正方形紙片沿EF折疊,使得點A落在CD邊上的點A處,此時點B落在點B處.已知折痕EF=13,則AE的長等于_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動——探究特殊的平行四邊形

問題情境

如圖,在四邊形ABCD中,AC為對角線,AB=AD,BC=DC請你添加條件,使它們成為特殊的平行四邊形

提出問題

(1)第一小組添加的條件是“ABCD”,則四邊形ABCD是菱形請你證明;

(2)第二小組添加的條件是“B=90°,BCD=90°”,則四邊形ABCD是正方形請你證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:相等的實數(shù)看作同一個實數(shù).有下列六種說法:

①數(shù)軸上有無數(shù)多個表示無理數(shù)的點;

②帶根號的數(shù)不一定是無理數(shù);

③每個有理數(shù)都可以用數(shù)軸上唯一的點來表示;

④數(shù)軸上每一個點都表示唯一一個實數(shù);

⑤沒有最大的負實數(shù),但有最小的正實數(shù);

⑥沒有最大的正整數(shù),但有最小的正整數(shù).

其中說法錯誤的有_____(注:填寫出所有錯誤說法的編號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店準備購進A、B兩種型號的書包共50個進行銷售,兩種書包的進價、售價如下表所示:

書包型號

進價(元/個)

售價(元/個)

A

200

300

B

100

150

購進這50個書包的總費用不超過7300元,且購進B型書包的個數(shù)不大于A型書包個數(shù)的

1)該文具店有哪幾種進貨方案?

2)若該文具店購進的50個書包全部售完,則該文具店采用哪種進貨方案,才能獲得最大利潤?最大利潤是多少?(利潤=售價﹣進價)

查看答案和解析>>

同步練習(xí)冊答案