已知如圖:△ABC為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B、D.設點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,則FC(AC+EC)=______.
∵∠ODA=∠OAD=45°,
∴OD=OA=m-3,則點D的坐標是(0,m-3).
又拋物線頂點為P(1,0),且過點B、D,
所以可設拋物線的解析式為:y=a(x-1)2
得:
a(3-1)2=m
a(0-1)2=m-3
,
解得:
a=1
m=4
,
∴拋物線的解析式為y=x2-2x+1;
過點Q作QM⊥AC于點M,過點Q作QN⊥BC于點N,
設點Q的坐標是(x,x2-2x+1),
則QM=CN=(x-1)2,MC=QN=3-x.
∵QMCE,
∴△PQM△PEC,
QM
EC
=
PM
PC
,
(x-1)2
EC
=
x-1
2

∴EC=2(x-1).
∵QNFC,
∴△BQN△BFC,
QN
FC
=
BN
BC

3-x
FC
=
4-(x-1)2
4
,
FC=
4
x+1
,
∵AC=4,
∴FC(AC+EC)=
4
x+1
[4+2(x-1)]=
4
x+1
(2x+2)=
4
x+1
×2×(x+1)=8.
故答案為:8.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設點P是∠AOC平分線上的一個動點(不與點O重合).
(1)試證明:無論點P運動到何處,PC總與PD相等;
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最?求出此時點P的坐標和△PDE的周長;
(4)設點N是矩形OABC的對稱中心,是否存在點P,使∠CPN=90°?若存在,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一座拋物線形拱橋,正常水位時橋下水面寬度為20m,拱頂距離水面4m.
(1)在如圖所示的直角坐標系中,求出該拋物線的解析式;
(2)設正常水位時橋下的水深為2m,為保證過往船只順利航行,橋下水面的寬度不得小于18m,求水深超過多少米時就會影響過往船只在橋下的順利航行.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BCx軸,點A在x軸上,點C在y軸上,且AC=BC,過A、B、C三點的拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)y=-
3
2
x2+bx
經(jīng)過點O、A、B三點,且A點坐標為(4,0),B的坐標為(m,2
3
),點C是拋物線在第三象限的一點,且橫坐標為-2
(1)求拋物線的解析式和直線BC的解析式.
(2)直線BC與x軸相交于點D,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,在平面直角坐標系中,Rt△ABC的斜邊BC在x軸上,直角頂點A在y軸的正半軸上,A(0,2),B(-1,0).
(1)求點C的坐標;
(2)求過A、B、C三點的拋物線的解析式和對稱軸;
(3)設點P(m,n)是拋物線在第一象限部分上的點,△PAC的面積為S,求S關于m的函數(shù)關系式,并求使S最大時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某飛機著陸滑行的路程s(米)與時間t(秒)的關系式為:s=60t-1.5t2,那么飛機著陸后滑行______米才能停止.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用一段長為30m的籬笆圍出一個一邊靠墻的矩形菜園,墻長為18m.設矩形的一邊長為xm,面積為ym2
(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)菜園的面積能否達到120m2?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-ax2+2ax+b與x軸的一個交點為A(-1,0),與y軸的正半軸交于點C.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點B的坐標;
(2)當點C在以AB為直徑的⊙P上時,求拋物線的解析式;
(3)坐標平面內(nèi)是否存在點M,使得以點M和(2)中拋物線上的三點A、B、C為頂點的四邊形是平行四邊形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案