【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.

(1)求證:AD=CE;
(2)求∠DFC的度數(shù).

【答案】
(1)證明:∵△ABC是等邊三角形,

∴∠BAC=∠B=60°,AB=AC.

又∵AE=BD,

∴△AEC≌△BDA(SAS).

∴AD=CE


(2)解:

∵(1)△AEC≌△BDA,

∴∠ACE=∠BAD,

∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°


【解析】(1)由等邊三角形性質(zhì)易得∠BAC=∠B=60°,AB=AC;題干給了AE=BD,所以得到△AEC≌△BDA.AD=CE;
(2)由外角關(guān)系結(jié)合(1)中得到的△AEC≌△BDA易得∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°
【考點精析】根據(jù)題目的已知條件,利用等邊三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握等邊三角形的三個角都相等并且每個角都是60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式由左邊到右邊的變形中,屬于分解因式的是(
A.a(x+y)=ax+ay
B.x2﹣4x+4=x(x﹣4)+4
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D

1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;

2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點PPF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;

用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?

設(shè)△BCF的面積為S,求Sm的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);

2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是(
A.對重慶市轄區(qū)內(nèi)長江流域水質(zhì)情況的調(diào)查
B.對乘坐飛機的旅客是否攜帶違禁物品的調(diào)查
C.對一個社區(qū)每天丟棄塑料袋數(shù)量的調(diào)查
D.對重慶電視臺“天天630”欄目收視率的調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx﹣k(k<0)的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列關(guān)于自然數(shù)的等式:
(i)32﹣4×12=5 ①
(ii)52﹣4×22=9 ②
(iii)72﹣4×32=13 ③

根據(jù)上述規(guī)律解決下列問題:
(1)完成第五個等式:112﹣4× 2=
(2)寫出你猜想的第n個等式(用含n的式子表示),并驗證其正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,屬于假命題的是(

A. 三角形的內(nèi)角和等于180° B. 圓是軸對稱圖形,任何一條直徑都是圓的對稱軸;

C. 對頂角相等; D. 在同一平面內(nèi),垂直于同一條直線的兩條直線相互平行.

查看答案和解析>>

同步練習(xí)冊答案