【題目】已知四邊形ABCD與四邊形A′B′C′D′是位似圖形,且它們的對應(yīng)邊的比為3:4,則四邊形ABCD與四邊形A′B′C′D′的周長之比為______,面積之比為______.

【答案】3:4 9:16

【解析】

由相似多邊形對應(yīng)邊周長的比等于相似比, 可知四邊形ABCD與四邊形A' B' C' D' 的周長比;

由相似多邊形的面積比等于相似比的平方,可得四邊形ABCD與四邊形A' B' C' D' 的面積比.

: 四邊形ABCD與四邊形A′B′C′D′是位似圖形,且它們的對應(yīng)邊的比為3:4,

四邊形ABCD與四邊形A' B' C' D' 的周長之比為3:4,

四邊形ABCD與四邊形A' B' C' D' 的面積之比9:16,

故答案:3:4 ; 9:16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為_____m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向 A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二: 同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作出弧AB所在的圓”的尺規(guī)作圖過程.

已知:弧AB.

求作:弧AB所在的圓.

作法:如圖,

(1)在弧AB上任取三個點D,C,E;

(2)連接DC,EC;

(3)分別作DC和EC的垂直平分線,兩垂直平分線的交點為點O.

(4)以 O為圓心,OC長為半徑作圓,所以O即為所求作的弧AB所在的圓.

請回答:該尺規(guī)作圖的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,點E是BC邊上一點,且BE:EC=2:1,AE與BD交于點F,則△AFD與四邊形DFEC的面積之比是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于(  )

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線。

(1)求頂點坐標(biāo),對稱軸;

(2)取何值時, 的增大而減小?

(3)取何值時, =0; 取何值時, >0; 取何值時, <0 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)x(x﹣1)=1﹣x

(2)x2+2x﹣35=0

(3)4x2﹣3=12x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D,E分別是AB,AC上的點,BECD交與點O,給出下列四個條件:①∠DBO=ECO,②∠BDO=CEO,③BD=CE,④OB=OC.

1)從上述四個條件中,任選兩個為條件,可以判定ABC是等腰三角形?寫出所有可能的情況.

2)選擇(1)中的某一種情形,進(jìn)行說明.

查看答案和解析>>

同步練習(xí)冊答案