精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,已知OA=12cm,OB=6cm,點P從O點開始沿OA邊向點A以1cm/s的速度移動:點Q從點B開始沿BO邊向點O以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(),那么:

(1)設△POQ的面積為,求關于的函數解析式。
(2)當△POQ的面積最大時,△  POQ沿直線PQ翻折后得到△PCQ,試判斷點C是否落在直線AB上,并說明理由。
(1)y=-t2+3t(0≤t≤6);  (2) 點C不落在直線AB上.

試題分析:(1)根據P、Q的速度,用時間t表示出OQ和OP的長,即可通過三角形的面積公式得出y,t的函數關系式;
(2)先根據(1)的函數式求出y最大時,x的值,即可得出OQ和OP的長,然后求出C點的坐標和直線AB的解析式,將C點坐標代入直線AB的解析式中即可判斷出C是否在AB上;
試題解析:(1)∵OA=12,OB=6由題意,得BQ=1·t=t,OP=1·t=t
∴OQ=6-t
∴y=×OP×OQ=·t(6-t)=-t2+3t(0≤t≤6)
(2)∵
∴當有最大值時,
∴OQ=3  OP=3即△POQ是等腰直角三角形。
把△POQ沿翻折后,可得四邊形是正方形
∴點C的坐標是(3,3)

∴直線的解析式為時,,
∴點C不落在直線AB上
考點: 二次函數綜合題.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

某職業(yè)學校三名學生到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話。
A:如果以10元/千克的價格銷售,那么每天可售出300千克.
B:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
C:通過調查驗證,我發(fā)現每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數關系.
(1)求y(千克)與x(元)(x>0)的函數關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲取的利潤達到600元?【利潤=銷售量×(銷售單價-進價)】
(3)一段時間后,發(fā)現這種水果每天的銷售量均不低于225千克.則此時該超市銷售這種水果每天獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

將拋物線y=2x2先沿x軸方向向左平移2個單位,再沿y軸方向向下平移3個單位,所得拋物線的解析式是 _________ 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知直線y=x+6交x軸于點A,交y軸于點C,經過A和原點O的拋物線y=ax2+bx(a<0)的頂點B在直線AC上.

(1)求拋物線的函數關系式;
(2)以B點為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關系,并說明理由;
(3)若E為⊙B優(yōu)弧上一動點,連結AE、OE,問在拋物線上是否存在一點M,使∠MOA︰∠AEO=2︰3,若存在,試求出點M的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,二次函數的圖象與x軸交于A、B兩點,A點在原點的左則,B點的坐標為(3,0),與y軸交于C(0,―3)點,點P是直線BC下方的拋物線上一動點。

⑴求這個二次函數的表達式;
⑵連結PO、PC,在同一平面內把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由;
⑶當點P運動到什么位置時,四邊形ABPC的面積最大,并求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知一個二次函數的頂點A的坐標為(1,0),且圖像經過點B(2,3).
(1)求這個二次函數的解析式.
(2)設圖像與y軸的交點為C,記,試用表示(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,有一個拋物線形拱橋,其橋拱的最大高度為16米,跨度為40米,現把它的示意圖放在平面直角坐標系中,則此拋物線的函數關系式為___________________.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數y=x2-(m-1)x+4的圖像與x軸有且只有一個交點,則m的值為(  )
A.1或-3B.5或-3C.-5或3D.以上都不對

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列關于拋物線的關系說法中,正確的是( )
A.它們的形狀相同,開口也相同;
B.它們都關于軸對稱;
C.它們的頂點不相同;
D.點(,)既在拋物線上也在

查看答案和解析>>

同步練習冊答案