【題目】如圖,E、F分別是平行四邊形ABCD的邊AD、BC上的點,且BE∥DF,AC分別交BE、DF于點G、H.下列結(jié)論:①四邊形BFDE是平行四邊形;②△AGE≌△CHF;③BG=DH;④S△AGE:S△CDH=GE:DH,其中正確的個數(shù)是( )
A.1B.2個C.3個D.4個
【答案】D
【解析】
利用兩組對邊平行的四邊形是平行四邊形判斷①;利用ASA證明兩三角形全等判斷②;利用全等三角形的性質(zhì)可判斷③④.
解:∵四邊形ABCD是平行四邊形
∴AD∥BC,AB∥CD,AD=BC
∵BE∥DF,AD∥BC
∴四邊形BEDF是平行四邊形,
故①正確
∵四邊形BEDF是平行四邊形,
∴BF=DE,DF=BE
∴AE=FC,
∵AD∥BC,BE∥DF
∴∠DAC=∠ACB,∠ADF=∠DFC,∠AEB=∠ADF
∴∠AEB=∠DFC,且∠DAC=∠ACB,AE=CF
∴△AGE≌△CHF(ASA)
故②正確
∵△AGE≌△CHF
∴GE=FH,且BE=DF
∴BG=DH
故③正確
∵△AGE≌△CHF
∴S△AGE=S△CHF,
∵S△CHF:S△CDH=FH:DH,
∴S△AGE:S△CDH=GE:DH,
故④正確
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是雙曲線上的一個動點,連接并延長交雙曲線于點將線段繞點逆時針旋轉(zhuǎn)得到線段若點在雙曲線上運動,則_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙O與邊AB交于點D,過點D作⊙O的切線,交BC于E.
(1)求證:點E是邊BC的中點;
(2)求證:BC2=BDBA;
(3)當(dāng)AC=BC時,四邊形OCED是什么四邊形,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的小布袋中裝有4個質(zhì)地、大小完全相同的小球,它們分別標(biāo)有數(shù)字0,1,2,3,小明從布袋里隨機(jī)摸出一個小球,記下數(shù)字為,小紅在剩下的3個小球中隨機(jī)摸出一個小球,記下數(shù)字為,這樣確定了點的坐標(biāo).
(1)畫樹狀圖或列表,寫出點所有可能的坐標(biāo);
(2)小明和小紅約定做一個游戲,其規(guī)則為:若在第一象限,則小明勝;否則,小紅勝;這個游戲公平嗎?請你作出判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:點(x,y)在直線y=﹣x+1上,且x2+y2=2,求x7+y7的值.
(2)計算:
(3)已知a、b、c是直角三角形△ABC的角A、B、C所對的邊,∠C=90°.求:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)均為整數(shù)的點叫做整點,已知反比例函數(shù)y=(m<0)與y=x2﹣5在第四象限內(nèi)圍成的封閉圖形(包括邊界)內(nèi)的整點的個數(shù)為4,則實數(shù)m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是某兒童樂園為小朋友設(shè)計的滑梯平面圖.已知BC=4 m,AB=6 m,中間平臺寬度DE=1 m,EN,DM,CB為三根垂直于AB的支柱,垂足分別為N,M,B,∠EAB=31°,DF⊥BC于點F,∠CDF=45°,求DM和BC的水平距離BM的長度.(結(jié)果精確到0.1 m.參考數(shù)據(jù):sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com