分析 由翻折的性質(zhì)可知MA=PM,設(shè)MA=PM=xcm,則BM=(12-x)cm,最后在Rt△PBM中由勾股定理可求得AM的長.
解答 解:由翻折的性質(zhì)可知:MA=PM,設(shè)MA=PM=xcm,則BM=(12-x)cm.
在Rt△PBM中由勾股定理得:PM2=PB2+MB2,即x2=52+(12-x)2.
解得:x=$\frac{169}{24}$cm.
AD的長為$\frac{169}{24}$cm.
點(diǎn)評 本題主要考查的是翻折的性質(zhì)、勾股定理的應(yīng)用,依據(jù)勾股定理列出關(guān)于x的方程是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
選擇意向 | 所占百分比 |
文學(xué)鑒賞 | a |
科學(xué)實(shí)驗(yàn) | 35% |
音樂舞蹈 | b |
手工編織 | 10% |
其他 | c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 64 | B. | 65 | C. | 66 | D. | 67 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | -3 | -4 | -3 | 0 | … |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com