已知實(shí)數(shù)a,b,c滿(mǎn)足abc=-1,a+b+c=4,,則a2+b2+c2=   
【答案】分析:把a(bǔ)2-3a-1變形后,將abc=-1,a+b+c=4代入得到結(jié)果為a(b-1)(c-1),同理將已知等式的第二、三個(gè)分母變形,將已知等式左邊通分并利用同分母分式的加法法則計(jì)算,整理后將abc=-1,a+b+c=4代入求出ab+ac+bc的值,將所求的式子利用公式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc變形后,將a+b+c及ab+ac+bc的值代入即可求出值.
解答:解:∵abc=-1,a+b+c=4,
∴a2-3a-1=a2-3a+abc=a(bc+a-3)=a(bc-b-c+1)=a(b-1)(c-1),
=,
同理可得:==,
++=,
++=,
=,即(a-1)(b-1)(c-1)=(a-1)+(b-1)+(c-1),
整理得:(abc-ab-ac-bc+a+b+c-1)=a+b+c-3,
將abc=-1,a+b+c=4代入得:ab+bc+ac=-
則a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=
故答案為:
點(diǎn)評(píng):此題考查了分式的混合運(yùn)算,利用了整體代入的數(shù)學(xué)思想,其技巧性較強(qiáng),其中把已知等式的各分母進(jìn)行適當(dāng)?shù)淖冃问墙獗绢}的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c為實(shí)數(shù),且滿(mǎn)足下式:a2+b2+c2=1,①,a(
1
b
+
1
c
)+b(
1
c
+
1
a
)+c(
1
a
+
1
b
)=-3
;②求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•菏澤)(1)已知m是方程x2-x-2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式(m2-m)(m-
2
m
+1)
的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)y=
k
x
的圖象交于A(yíng)、B兩點(diǎn).
①根據(jù)圖象求k的值;
②點(diǎn)P在y軸上,且滿(mǎn)足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫(xiě)出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分為6分)已知關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2,求k的取值范圍.

解答過(guò)程:根據(jù)題意,得

      =

=>0

k

所以當(dāng)k時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

當(dāng)你讀了上面的解答過(guò)程后,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并寫(xiě)出正確的答案.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知m是方程x2﹣x﹣2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式的值.

(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x的圖象與反比例函數(shù)的圖象交于A(yíng)、B兩點(diǎn).

①根據(jù)圖象求k的值;

②點(diǎn)P在y軸上,且滿(mǎn)足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫(xiě)出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年山東省菏澤市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知m是方程x2-x-2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)的圖象交于A(yíng)、B兩點(diǎn).
①根據(jù)圖象求k的值;
②點(diǎn)P在y軸上,且滿(mǎn)足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫(xiě)出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案