【題目】(題文)如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣x+2與坐標(biāo)軸分別交于A,B兩點(diǎn),過(guò)點(diǎn)B作BDx軸,拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)B,D兩點(diǎn),且對(duì)稱(chēng)軸為x=2,設(shè)x軸上一動(dòng)點(diǎn)P(n,0),過(guò)點(diǎn)P分別作直線(xiàn)BD,AB的垂線(xiàn),垂足分別為M,N.

(1)求拋物線(xiàn)的解析式及頂點(diǎn)C的坐標(biāo);

(2)設(shè)四邊形ABCD的面積為S四邊形ABCD,當(dāng)n為何值時(shí),=;

(3)是否存在點(diǎn)P(n,0),使得PMN為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=﹣x2+2x+2,(2,4);(2)當(dāng)n=﹣2或n=6時(shí),=;(3)存在P(﹣2,0)

【解析】

(1)根據(jù)對(duì)稱(chēng)軸公式以及點(diǎn)坐標(biāo),構(gòu)建方程組即可解決問(wèn)題;

(2)分兩種情形分別構(gòu)建方程即可解決問(wèn)題;

(3)分三種情形:①,②,③,分別求解解決問(wèn)題.

(1)當(dāng)x=0時(shí),直線(xiàn)y=﹣x+2=2,即B(0,2)

當(dāng)y=0時(shí),﹣x+2=0,解得x=2,即A(2,0),

將B點(diǎn)坐標(biāo)代入函數(shù)解析式,對(duì)稱(chēng)軸,得

解得,

拋物線(xiàn)的解析式為y=﹣x2+2x+2,

當(dāng)x=2時(shí),y=﹣×22+2×2+2=4,

頂點(diǎn)坐標(biāo)(2,4);

(2)如圖1,過(guò)N作NHx軸于H,

∵BD∥x軸,拋物線(xiàn)的對(duì)稱(chēng)軸x=2,連接AC,則AC⊥BD,

∴S四邊形ABCD=×4×4=8,

=,

∴SPMN=2,又N在直線(xiàn)y=﹣x+2上,

∴∠NPH=45°,且SPMN=PHPM,

∵BD∥x軸,

PM=2,當(dāng)點(diǎn)P在A點(diǎn)右側(cè)時(shí),2+PH=n,即PH=

∴SPMN=PHPM=××2=2解得n=6;

當(dāng)點(diǎn)P在A點(diǎn)左側(cè)時(shí),2﹣PH=n,即PH=,

∴SPMN=PHPM=××2=2,解得n=﹣2,

綜上所述,當(dāng)n=﹣2或n=6時(shí), =;

(3)存在.如圖 2,當(dāng)PM=PN時(shí),

∵PN=PM=2,PH=,n=2,

∴p(2+2,0)或P(2﹣2,0);

如圖3,當(dāng)MN=PN時(shí),

∵M(jìn)N⊥PN,

∴△PMN是等腰直角三角形,且PM=2,

∴PN=

∴P(0,0);

當(dāng)PM=MN時(shí),

∵M(jìn)N=PM=2,MN⊥PM,

∴△PMN是等腰直角三角形,

∴MB=2,∴P(﹣2,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABCD中,AEBC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn)得到△BA′E′,連接DA′,若∠ADC=60°,AD=5,DC=4,則DA′的大小為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,線(xiàn)段AB和射線(xiàn)BM交于點(diǎn)B

1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫(xiě)做法)

①在射線(xiàn)BM上作一點(diǎn)C,使ACAB,連接AC

②作∠ABM的角平分線(xiàn)交AC于點(diǎn)D

③在射線(xiàn)CM上作一點(diǎn)E,使CECD,連接DE

2)在(1)中所作的圖形中,通過(guò)觀察和測(cè)量可以發(fā)現(xiàn)BDDE,請(qǐng)將下面的證明過(guò)程補(bǔ)充完整證明:∵ACAB

∴∠   =∠   

BD平分∠ABM,

∴∠DBE=﹣   

CECD

∴∠CDE=∠CED

∴∠ACB=∠CDE+CED,

∴∠CEDACB

∴∠DBE=∠CED,

BDDE,(   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)請(qǐng)畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的A′B′C′(其中A′,B′,C′分別是A,B,C的對(duì)應(yīng)點(diǎn),不寫(xiě)畫(huà)法);

(2)直接寫(xiě)出A′,B′,C′三點(diǎn)的坐標(biāo):A′(   ),B′(   ),C′(   

(3)計(jì)算ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC的位置如圖所示.

1)分別寫(xiě)出ABC各個(gè)頂點(diǎn)的坐標(biāo);

2)判斷ABC的形狀;

3)請(qǐng)?jiān)趫D中畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的圖形A'B'C'

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線(xiàn)段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角三角形斜邊上的中線(xiàn)把直角三角形分成的兩個(gè)三角形的關(guān)系是( 。

A. 形狀相同 B. 周長(zhǎng)相等 C. 面積相等 D. 全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:

(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問(wèn)題:

①估計(jì)甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CAAB,垂足為 A,AB=24,AC=12,射線(xiàn) BMAB,垂足為 B, 一動(dòng)點(diǎn) E A點(diǎn)出發(fā)以 3 厘米/秒沿射線(xiàn) AN 運(yùn)動(dòng),點(diǎn) D 為射線(xiàn) BM 上一動(dòng)點(diǎn), 隨著 E 點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持 EDCB,當(dāng)點(diǎn) E 經(jīng)過(guò)______秒時(shí),△DEB 與△BCA 全等.

查看答案和解析>>

同步練習(xí)冊(cè)答案