精英家教網 > 初中數學 > 題目詳情
7、已知,拋物線y=ax2+bx+c的部分圖象如圖,則下列說法①對稱軸是直線x=1;②當-1<x<3時,y<0;③a+b+c=-4;④方程ax2+bx+c+5=0無實數根.其中正確的有(  )
分析:①可直接觀察得對稱軸;②由點(-1,0)及對稱軸x=1,可得另一交點(3,0),從而判斷y<0時,x的范圍;③設交點式,把點(0,-3)代入可求拋物線解析式,判斷a+b+c的值;④可求出頂點坐標為(1,-4),就能知道y=ax2+bx+c的最小值是-4,ax2+bx+c+5≥1,方程無實數根.
解答:解:①、由圖象可知,對稱軸是直線x=1,正確;
②、對稱軸是直線x=1,拋物線與x軸的一個交點是(-1,0),則另一個交點是(3,0),所以當-1<x<3時,y<0,正確;
③、已知點(-1,0),(3,0),設拋物線的交點式y=a(x+1)(x-3),再把點(0,-3)代入得a=1,所以y=(x+1)(x-3)=x2-2x-3,故a+b+c=1-2-3=-4,正確;
④因為y=x2-2x-3=(x-1)2-4≥-4,所以y+5≥1,即ax2+bx+c+5≥1,方程無實數根,正確.
故選D.
點評:綜合考評了二次函數的圖象和性質中的對稱性,以及待定系數法求拋物線方程及頂點坐標.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為
3
,拋物線與x軸交于點P、Q,問是否精英家教網存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經過點(1,0),一條直線y=ax+b,它們的系數之間滿足如下關系:a>b>c.
(1)求證:拋物線與直線一定有兩個不同的交點;
(2)設拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實數k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
(1)頂點P的坐標是
(-1,4)
(-1,4)
;
(2)若直線y=ax+b經過另一點A(0,11),求出該直線的表達式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:拋物線數學公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為數學公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年四川省綿陽市南山中學自主招生考試數學試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案