【題目】如圖,在△ABC中,D,EBC邊上的兩點(diǎn),ADAE,BECD,∠1=∠2110°,∠BAE60°,則∠CAE的度數(shù)為(

A.10°B.20°

C.30°D.60°

【答案】B

【解析】

根據(jù)三角形內(nèi)角和定理可求∠DAE的度數(shù),然后可求∠BAD的度數(shù).運(yùn)用SAS證明△ABD≌△ACE,得∠BAD=CAE.則可求∠CAE的度數(shù).

解:如圖,∵∠1=2=110°,
∴∠ADE=AED=70°,
∴∠DAE=180°-2×70°=40°

∵∠BAE=60°,
∴∠BAD =20°,
BE=CD,

BD=CE
在△ABD和△ACE中,

,

∴△ABD≌△ACESAS
∴∠BAD=CAE

∴∠CAE=20°
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明聽說“武黃城際列車”已經(jīng)開通,便設(shè)計(jì)了如下問題:如圖,以往從黃石A坐客車到武昌客運(yùn)站B,現(xiàn)在可以在黃石A坐“武黃城際列車”到武漢青山站C,再從青山站C坐市內(nèi)公共汽車到武昌客運(yùn)站B.設(shè)AB=80 km,BC=20 km,∠ABC=120°.請(qǐng)你幫助小明解決以下問題:

(1)求A,C之間的距離.(參考數(shù)據(jù)≈4.6)

(2)若客車的平均速度是60 km/h,市內(nèi)的公共汽車的平均速度為40 km/h,“武黃城際列車”的平均速度為180 km/h,為了在最短時(shí)間內(nèi)到達(dá)武昌客運(yùn)站,小明應(yīng)選擇哪種乘車方案?請(qǐng)說明理由.(不計(jì)候車時(shí)間)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),的頂點(diǎn)在格點(diǎn)上,且,以為原點(diǎn)建立平面直角坐標(biāo)系,平行于軸的直線經(jīng)過,請(qǐng)按要求解答下列問題.

1)畫出關(guān)于直線的對(duì)稱,并直接寫出點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo);

2)求點(diǎn)的距離;

3)在軸右側(cè)的格點(diǎn)中找一點(diǎn),使,并直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為米的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)的長度為米,矩形區(qū)域的面積為

求證:;

之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

為何值時(shí),有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠AOB.

求作:A'O'B',使∠A'O′B'=∠AOB

(1)如圖1,以點(diǎn)O為圓心,任意長為半徑畫弧,分別交OA,OB于點(diǎn)C、D;

(2)如圖2,畫一條射線O′A′,以點(diǎn)O′為圓心,OC長為半徑間弧,交O′A′于點(diǎn)C′;

(3)以點(diǎn)C′為圓心,CD長為半徑畫弧,與第2步中所而的弧交于點(diǎn)D′;

(4)過點(diǎn)D′畫射線O′B',則∠A'O'B'=∠AOB.

根據(jù)以上作圖步驟,請(qǐng)你證明∠A'O'B′=∠AOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn),∠EDF=90°

1)(觀察發(fā)現(xiàn))如圖①,若點(diǎn)EF分別為AB、AC上的點(diǎn),則圖中全等三角形一共有 對(duì);

2)(類比探究)若將∠EDF繞點(diǎn)D在平面內(nèi)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF點(diǎn)分別在AB、CA延長線上時(shí),BE=AF嗎?請(qǐng)利用圖②說明理由.

3)(解決問題)連結(jié)EF,把△EDF把繞點(diǎn)D在平面內(nèi)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到DF與△ABC的腰所在的直線垂直時(shí),請(qǐng)直接寫出∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABCD的邊長為4,點(diǎn)E是對(duì)角線BD延長線上一點(diǎn),AE=BD.將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°<α<360°)得到△ABE′,點(diǎn)B、E的對(duì)應(yīng)點(diǎn)分別為B′、E′.

(1)如圖1,當(dāng)α=30°時(shí),求證:BC=DE;

(2)連接BE、DE′,當(dāng)BE=DE′時(shí),請(qǐng)用圖2求α的值;

(3)如圖3,點(diǎn)PAB的中點(diǎn),點(diǎn)Q為線段BE′上任意一點(diǎn),試探究,在此旋轉(zhuǎn)過程中,線段PQ長度的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,

a的取值范圍;

是否存在實(shí)數(shù)a,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案