【題目】探究:如圖①,在矩形ABCD中,以點(diǎn)A為直角頂點(diǎn)作Rt△AEF,連結(jié)BE、DF,直線DF交直線BE于點(diǎn)G,DG與AB交于點(diǎn)H,且.
(1)求證:△ABE∽△ADF.
(2)求證:DG⊥BE;
拓展:如圖②,在ABCD中,以點(diǎn)A為頂點(diǎn)作∠EAF=∠BAD,連結(jié)BE、DF,直線DF交直線BE于點(diǎn)G,且,若∠BCD=130°,則∠EGD的大小為 度.
【答案】(1)△ABE∽△ADF;(2)50.
【解析】
探究:(1)根據(jù)矩形的性質(zhì)得到∠BAD=90°,根據(jù)余角的性質(zhì)得到∠EAB=∠DAF,根據(jù)相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)得到∠ADF=∠ABE,根據(jù)對(duì)頂角相等得到∠AHD=∠BHG,根據(jù)三角形的內(nèi)角和即可得到結(jié)論;拓展:根據(jù)平行四邊形的性質(zhì)得到AB∥CD,AD∥BC,求得∠ABC=180°-∠C=50°,∠ADF=∠2,根據(jù)相似三角形的性質(zhì)得到∠ADF=∠3,根據(jù)三角形的內(nèi)角和和平角的定義即可得到結(jié)論.
探究:(1)在矩形ABCD中,
∵∠BAD=90°,
∵∠AEF=90°,
∴∠EAB+∠BAF=∠DAF+∠BAF=90°,
∴∠EAB=∠DAF,
∵,
∴△ABE∽△ADF;
(2)∵△ABE∽△ADF,
∴∠ADF=∠ABE,
設(shè)AB與DG的交點(diǎn)為H,
∵∠AHD=∠BHG,
∴∠BGH=180°﹣∠ABG﹣∠BHG=180°﹣∠AHF﹣∠ADF=∠BAD=90°,
∴DG⊥BE;
拓展:在ABCD中,
∵AB∥CD,AD∥BC,
∴∠ABC=180°﹣∠C=50°,∠ADF=∠2,
∵∠EAF=∠BAD,
∴∠EAF﹣∠BAF=∠BAD﹣∠BAF,
即∠EAB=∠DAF,
∵,
∴△ABE∽△ADF,
∴∠ADF=∠3,
∴∠2=∠3,
∵∠ABC=180°﹣∠GBC﹣∠3,∠EGD=180°﹣∠GBD﹣∠2,
∴∠EGD=∠ABC=50°,
故答案為:50.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在邊AB上的點(diǎn)D處,已知MN∥AB,MC=6,NC=2,則四邊形MABN的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列格式, - , , , …
(1)化簡(jiǎn)以上各式,并計(jì)算出結(jié)果;
(2)以上格式的結(jié)果存在一定的規(guī)律,請(qǐng)按規(guī)律寫出第5個(gè)式子及結(jié)果.
(3)用含n(n≥1的整數(shù))的式子寫出第n個(gè)式子及結(jié)果,并給出證明的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是矩形ABCD的一條對(duì)角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點(diǎn)E,F,垂足為點(diǎn)O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形(長(zhǎng)方形)ABCD沿EF折疊,使點(diǎn)B與點(diǎn)D重合,點(diǎn)A落在G處,連接BE,DF,則下列結(jié)論:①DE=DF,②FB=FE,③BE=DF,④B、E、G三點(diǎn)在同一直線上,其中正確的是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,邊長(zhǎng)為6,D是BC邊上的動(dòng)點(diǎn),∠EDF=60°.
(1)求證:△BDE∽△CFD;
(2)當(dāng)BD=1,CF=3時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的一個(gè)內(nèi)角是則它的另外兩個(gè)內(nèi)角的度數(shù)是__________,若等腰三角形的一個(gè)內(nèi)角是,則它的另外兩個(gè)內(nèi)角的度數(shù)__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com