已知:如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.
(1);(2)
解析試題分析:(1)根據(jù)AD∥BC,∠1與∠2是內錯角,因而就可以求得∠2,根據(jù)圖形的折疊的定義,可以得到∠4=∠2,進而就可以求的∠3的度數(shù);
(2)已知AE=1,在直角△ABE中,根據(jù)三角函數(shù)就可以求出AB、BE的長,BE=DE,則可以求出AD的長,就可以得到矩形的面積.
解:(1)如圖
由AD∥BC,
∴∠2=∠1=60°;
又∠4=∠2=60°,
∴∠3=180-60-60=60°;
(2)在直角△ABE中,由(1)知∠3=60°,
∴∠5=90-60=30°;
∴BE=2AE=2,
考點:折疊的性質,矩形的性質
點評:折疊的性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
科目:初中數(shù)學 來源:北師大版(2012) 八年級下 題型:
|
查看答案和解析>>
科目:初中數(shù)學 來源:2015屆初中數(shù)學蘇教版八年級上冊第一章練習卷(解析版) 題型:選擇題
如圖所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則下列三個結論:①AS=AR;②QP∥AR;③△BPR≌△QPS中( 。
A.全部正確 B.僅①和②正確
C.僅①正確 D.僅①和③正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
如圖是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面積分別為2,5,1,2.則最大的正方形E的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
小明、小華在一棟電梯樓前感慨樓房真高.小明說:“這樓起碼20層!”小華卻不以為然:“20層?我看沒有,數(shù)數(shù)就知道了!”小明說:“有本事,你不用數(shù)也能明白!”小華想了想說:“沒問題!讓我們來量一量吧!”小明、小華在樓體兩側各選A、B兩點,測量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點在同一直線上)問:
(1)樓高多少米?
(2)若每層樓按3米計算,你支持小明還是小華的觀點呢?請說明理由.(參考數(shù)據(jù):≈1.73,≈1.41,≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,△ABC中,AB=AC,AD,CD分別是△ABC兩個外角的平分線。
(1)求證:AC=AD;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com