如圖,在由邊長(zhǎng)為1的25個(gè)小正方形組成的正方形網(wǎng)格上有一個(gè)△ABC,在這個(gè)網(wǎng)格上畫一個(gè)與△ABC相似,且面積最大的△A1B1C1(A1,B1,C1,三點(diǎn)都在格點(diǎn)上).則這個(gè)三角形的面積是
5
5
分析:如圖可得出AC=
10
,則AC的對(duì)應(yīng)邊A1C1最長(zhǎng)的長(zhǎng)度為
50
,所以可依次作出A1B1,B1C1.即△A1B1C1,△A1B1C1的面積可用相似比求解.
解答:解:利用勾股定理得出△ABC各邊長(zhǎng)AB=
2
,BC=2,AC=
10
,
故AC的對(duì)應(yīng)邊A1C1最長(zhǎng)的長(zhǎng)度為
5
×
10
=
50
=5
2
,A1C1=5
2
,A1B1=
10
,B1C1=2
5

A1C1
AC
=
50
10
=
5

∴S
SA1B1C1
S△ABC
=
(A1C1)2
(AC)2
=5,
∵S△ABC=
1
2
×1×2=1,
∴△A1B1C1的面積為:5.
點(diǎn)評(píng):本題考查了位似圖形的意義及作圖能力.解題的關(guān)鍵是根據(jù)AC=
10
,找到AC的對(duì)應(yīng)邊最長(zhǎng)的長(zhǎng)度為
50
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,在由邊長(zhǎng)為1的小正方形組成的方格紙中,有兩個(gè)全等的三角形,即△A1B1C1和△A2B2C2
(1)請(qǐng)你指出在方格紙內(nèi)如何運(yùn)用平移、旋轉(zhuǎn)變換,將△A1B1C1重合到△A2B2C2上;
(2)在方格紙中將△A1B1C1經(jīng)過(guò)怎樣的變換后可以與△A2B2C2成中心對(duì)稱圖形,畫出變換后的三角形并標(biāo)出對(duì)稱中心.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C、D、E都在小正方形的頂點(diǎn)上,求tan∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•阜新)如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,三角形ABC的頂點(diǎn)均落在格點(diǎn)上.
(1)將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后,得到△A1B1C1.在網(wǎng)格中畫出△A1B1C1;
(2)求線段OA在旋轉(zhuǎn)過(guò)程中掃過(guò)的圖形面積;(結(jié)果保留π)
(3)求∠BCC1的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由邊長(zhǎng)為1的小正方形組成的方格紙中,有兩個(gè)全等的三角形,即△A1B1C1和△A2B2C2.請(qǐng)你指出在方格紙內(nèi)如何運(yùn)用平移、旋轉(zhuǎn)變換,將△A1B1C1重合到△A2B2C2上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)線段BC的長(zhǎng)為
5
5
,△ABC的面積為
5
5

(2)畫線段AP(P為格點(diǎn)),使AP=BC(畫出所有可能情形).
(3)試說(shuō)明:∠BAC=90°.

查看答案和解析>>

同步練習(xí)冊(cè)答案