【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.
【答案】
(1)證明:∵點(diǎn)D是AB中點(diǎn),AC=BC,
∠ACB=90°,
∴CD⊥AB,∠ACD=∠BCD=45°,
∴∠CAD=∠CBD=45°,
∴∠CAE=∠BCG,
又∵BF⊥CE,
∴∠CBG+∠BCF=90°,
又∵∠ACE+∠BCF=90°,
∴∠ACE=∠CBG,
在△AEC和△CGB中,
∴△AEC≌△CGB(ASA),
∴AE=CG
(2)解:BE=CM.
證明:∵CH⊥HM,CD⊥ED,
∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,
∴∠CMA=∠BEC,
又∵∠ACM=∠CBE=45°,
在△BCE和△CAM中, ,
∴△BCE≌△CAM(AAS),
∴BE=CM.
【解析】(1)首先根據(jù)點(diǎn)D是AB中點(diǎn),∠ACB=90°,可得出∠ACD=∠BCD=45°,判斷出△AEC≌△CGB,即可得出AE=CG,(2)根據(jù)垂直的定義得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根據(jù)AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,進(jìn)而證明出BE=CM.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于圓的周長公式C=2πr,下列說法正確的是 ( )
A. C,r是變量,2是常量 B. r是變量,C是常量
C. C是變量,r是常量 D. C,r是變量,2π是常量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,火車站、碼頭分別位于A,B兩點(diǎn),直線a和b分別表示鐵路與河流.
(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;
(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;
(3)從火車站到河流怎樣走最近,畫圖并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖甲,AB∥CD,試問∠2與∠1+∠3的關(guān)系是什么,為什么?
(2)如圖乙,AB∥CD,試問∠2+∠4與∠1+∠3+∠5一樣大嗎?為什么?
(3)如圖丙,AB∥CD,試問∠2+∠4+∠6與∠1+∠3+∠5+∠7哪個(gè)大?為什么?
你能將它們推廣到一般情況嗎?請寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖乙,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1)如圖甲,將△ADE繞點(diǎn)A 旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是 .
① ② ③ ④
(2)若AB=4,AD=2,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長;
②求旋轉(zhuǎn)過程中線段PB長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com