【題目】已知對任意有理數(shù)a、b,關于x、y的二元一次方程(a﹣b)x﹣(a+b)y=a+b有一組公共解,則公共解為

【答案】
【解析】解:由已知得,a(x﹣y﹣1)﹣b(x+y+1)=0, 即 ,
①+②,2x=0,x=0;
把x=0代入①得,y=﹣1,
故此方程組的解為:
所以答案是:
另法:
解:因為對于任意有理數(shù)a,b,關于xy的二元一次方程(a﹣b)x﹣(a+b)y=a+b都有一組公共解,
所以,設a=1,b=﹣1(a+b=0),
則(a﹣b)x﹣(a+b)y=a+b為:
2x=0,
x=0,
設a=b=1,(a﹣b=0),
則(a﹣b)x﹣(a+b)y=a+b為:
﹣2y=2,
y=﹣1,
所以公共解為:x=0,y=﹣1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB∥CD,直線MN分別交AB、CD于M、N兩點,若ME、NF分別是∠AMN、∠DNM的角平分線,試說明:ME∥NF

解:∵AB∥CD,(已知)
∴∠AMN=∠DNM()
∵ME、NF分別是∠AMN、∠DNM的角平分線,(已知)
∴∠EMN=∠AMN,
∠FNM=∠DNM (角平分線的定義)
∴∠EMN=∠FNM(等量代換)
∴ME∥NF()
由此我們可以得出一個結論:
兩條平行線被第三條直線所截,一對角的平分線互相

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,∠B +D=200°,則∠A=__________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,矩形ABCD的邊AD在x軸上,點A在原點,AB=3,AD=6.若矩形以每秒2個單位長度沿x軸正方向作勻速運動.同時點P從A點出發(fā)以每秒1個單位長度沿A﹣B﹣C﹣D的路線作勻速運動,當P點運動到D點時停止運動,矩形ABCD也隨之停止運動.
(1)求P點從A點運動到D點所需的時間;
(2)設P點的運動時間為t(秒),
①當t=8時,求出點P的坐標;
②若△OAP面積為S,試探究點P在運動過程中S與t之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=6,AB=5,則AE的長為( 。

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正方形和兩個等邊三角形的位置如圖所示,若∠1=50°,則∠2+∠3=(  )

A.190°
B.130°
C.100°
D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)(﹣1)2018+22﹣(3.14﹣π)0
(2)(﹣a)2a4÷a3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:用2輛A型車和1輛B型車裝滿貨物一次可運貨10噸;用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸,某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運轉(zhuǎn),且恰好每輛車都裝滿貨物. 根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設計,有幾種租車方案?
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次,請選出最省錢的租車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了籌備校慶活動,準備印制一批校慶紀念冊.該紀念冊分A、B兩種,每冊都需要10張8K大小的紙,其中A紀念冊有4張彩色頁和6張黑白頁組成;B紀念冊有6張彩色頁和4張黑白頁組成.印制這批紀念冊的總費用由制版費和印制費兩部分組成,制版費與印數(shù)無關,價格為:彩色頁300元∕張,黑白頁50元∕張;印制費與總印數(shù)的關系見下表.

總印數(shù)a(單位:千冊)

1≤a<5

5≤a<10

彩色(單位:元∕張)

2.2

2.0

黑白(單位:元∕張)

0.7

0.5


(1)印制這批紀念冊的制版費為多少元.
(2)若印制A、B兩種紀念冊各2千冊,則共需多少費用?
(3)如果該校共印制了A、B兩種紀念冊6千冊,一共花費了75500元,則該校印制了A、B兩種紀念冊各多少冊?

查看答案和解析>>

同步練習冊答案