如圖,在矩形ABCD中,AB=2AD,E是CD上一點,且AE=AB,則∠CBE的度數(shù)是( 。
A.30°B.22.5°C.15°D.10°

∵AB=2AD,AE=AB.
∴AE=2AD.
∴直角△ADE中∠AED=30°.
∵ABCD
∴∠EAB=∠AED=30°.
又∵AE=AB.
∴∠AEB=∠ABE=
180-30
2
=75°.
∴∠CBE=15°.
故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,以矩形ABCD的頂點A為原點,AD所在的直線為x軸,AB所在的直線為y軸,建立平面直角坐標系.點D的坐標為(8,0),點B的坐標為(0,6),點F在對角線AC上運動(點F不與點A、C重合),過點F分別作x軸、y軸的垂線,垂足為G、E.設(shè)四邊形BCFE的面積為S1,四邊形CDGF的面積為S2,△AFG的面積為S3
(1)試判斷S1,S2的關(guān)系,并加以證明;
(2)當S3:S2=1:3時,求點F的坐標;
(3)如圖2,在(2)的條件下,把△AEF沿對角線AC所在直線平移,得到△A′E′F′,且A′,F(xiàn)′兩點始終在直線AC上,是否存在這樣的點E′,使點E′到x軸的距離與到y(tǒng)軸的距離比是5:4?若存在,請求出點E′的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形是由六個正方形組成,其中最小的正方形的面積為1,則此矩形的長為______,寬為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=8,BC=6,E、F是AC的三等分點.則△BEF的面積為( 。
A.12B.8C.6D.無法計算

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

矩形ABCD中,AB=6,BC=2,過頂點A作一條射線,將矩形分成一個三角形和一個梯形,若分成的三角形的面積等于矩形面積的
1
4
,則所分成的梯形的上底長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知在矩形ABCD中,AB=
2
,BC=3,點F為CD的中點,EF⊥BF交AD于點E,連接CE交BF于點G,則EG=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

矩形的邊長為10cm和15cm,其中一內(nèi)角平分線分長邊為兩部分,這兩部分的長為( 。
A.6cm和9cmB.5cm和10cmC.4cm和11cmD.7cm和8cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀下述說明過程,討論完成下列問題:
已知:如圖所示,在?ABCD中,∠A的平分線與BC相交于點E,∠B的平分線與AD相交于點F,AE與BF相交于點O,試說明四邊形ABEF是菱形.
證明:(1)∵四邊形ABCD是平行四邊形,
(2)∴ADBC.
(3)∴∠ABE+∠BAF=180°.
(4)∵AE、BF分別平分∠BAF、∠ABE,
(5)∴∠1=∠2=
1
2
∠BAF,∠3=∠4=
1
2
∠ABE.
(6)∴∠1+∠3=
1
2
(∠BAF+∠ABE)=
1
2
×180°=90°.
(7)∴∠AOB=90°.
(8)∴AE⊥BF.
(9)∴四邊形ABEF是菱形.

問:①上述說明過程是否正確?
答:______.
②如果錯誤,指出在第______步到第______步推理錯誤,應(yīng)在第______步后添加如下證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,四邊形ABCD中,ADBC,已知BC=CD=AC=2
3
,AB=
6
,則BD的長為______.

查看答案和解析>>

同步練習冊答案