如圖,一條拋物線(xiàn)經(jīng)過(guò)原點(diǎn)和點(diǎn)C(8,0),A、B是該拋物線(xiàn)上的兩點(diǎn),AB∥x軸,OA=5,AB=2.點(diǎn)E在線(xiàn)段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經(jīng)過(guò)點(diǎn)A,另一邊交線(xiàn)段BC于點(diǎn)F,連接AF.

(1)求拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);
(3)當(dāng)△AEF是等腰三角形時(shí),求點(diǎn)E的坐標(biāo).

(1)y=-x2x;(2)(,0);(3)(3,0)、(2,0)、(,0).

解析試題分析:(1)根據(jù)題意可設(shè)該拋物線(xiàn)的解析式為:y=ax(x-8)(a≠0).然后將點(diǎn)A或點(diǎn)B的坐標(biāo)代入求值即可;
(2)由相似三角形△AOE∽△ECF的對(duì)應(yīng)邊成比例求得線(xiàn)段OE的長(zhǎng)度,則易求點(diǎn)E的坐標(biāo);
(3)需要分類(lèi)討論:當(dāng)AE=EF、AF=EF和AE=AF時(shí),分別求得點(diǎn)E的坐標(biāo).
試題解析:(1)拋物線(xiàn)中,AB∥OC,由對(duì)稱(chēng)性可知有等腰梯形AOCB.
而OA=5,AB=2,OC=8
則A(3,4),B(5,4)
拋物線(xiàn)的解析式是y=-x2x
(2)可以證明△AOE∽△ECF
,不妨設(shè)E(x,0),其中0≤x≤8,
,整理得x2-8x+12.5=0,解得
從而點(diǎn)E的坐標(biāo)為(,0)
(3)由(2)中相似還可知AO:EC=AE:EF,若△AEF為等腰三角形,則有三種可能.

①當(dāng)EA=EF時(shí),有EC=AO=5,∴E(3,0)
②當(dāng)AE=AF時(shí),作AH⊥EF于H,有AE:EF=5:6
∴EC=AO=6,
∴E(2,0)
③當(dāng)FA=FE時(shí),同理可得AE:EF=6:5
∴EC=AO=,
∴E(,0)
綜上所述,符合要求的點(diǎn)E有三個(gè).
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(2,-3),B(-1,0).
(1)求二次函數(shù)的解析式;
(2)觀察函數(shù)圖象,要使該二次函數(shù)的圖象與軸只有一個(gè)交點(diǎn),應(yīng)把圖象沿軸向上平移幾個(gè)單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園與墻平行的一邊長(zhǎng)為x(m),花園的面積為y(m2)。
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿(mǎn)足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由:
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B(0,4),已知點(diǎn)E(0,1).

(1)求m的值及點(diǎn)A的坐標(biāo);
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.
①當(dāng)點(diǎn)E′落在該二次函數(shù)的圖象上時(shí),求AA′的長(zhǎng);
②設(shè)AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時(shí)點(diǎn)E′的坐標(biāo);
③當(dāng)A′B+BE′取得最小值時(shí),求點(diǎn)E′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)m=       時(shí),函數(shù)圖像與x軸只有一個(gè)交點(diǎn);
(2)m為何值時(shí),函數(shù)圖像與x軸沒(méi)有交點(diǎn);
(3)若函數(shù)圖像與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且△ABC的面積為4,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,直線(xiàn)與x軸相交于點(diǎn)A,與直線(xiàn)相交于點(diǎn)P.動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著OPA的路線(xiàn)向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O,A重合),過(guò)點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動(dòng)t秒時(shí),矩形EBOF與△OPA重疊部分面積為S.

(1)求點(diǎn)P的坐標(biāo);
(2)請(qǐng)判斷△OPA的形狀并說(shuō)明理由;
(3)請(qǐng)?zhí)骄縎與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)軸相交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn)

(1)點(diǎn)的坐標(biāo)為        ,點(diǎn)的坐標(biāo)為        ;
(2)在軸的正半軸上是否存在點(diǎn),使以點(diǎn),為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(4,3),(3,0).
(1)b=        ,c=         ;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填寫(xiě)下表,并在右圖的直角坐標(biāo)系中畫(huà)出該函數(shù)的圖像;

x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若將此圖象沿x軸向左平移3個(gè)單位,直接寫(xiě)出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

有兩個(gè)直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。將這兩個(gè)直角三角形按圖1所示位置擺放,其中直角邊在同一直線(xiàn)上,且點(diǎn)與點(diǎn)重合,F(xiàn)固定,將以每秒1個(gè)單位長(zhǎng)度的速度在上向右平移,當(dāng)點(diǎn)與點(diǎn)重合時(shí)運(yùn)動(dòng)停止。設(shè)平移時(shí)間為秒。

(1)當(dāng)       秒時(shí),邊恰好經(jīng)過(guò)點(diǎn);當(dāng)       秒時(shí),運(yùn)動(dòng)停止;
(2)在平移過(guò)程中,設(shè)重疊部分的面積為,請(qǐng)直接寫(xiě)出的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
(3)當(dāng)停止運(yùn)動(dòng)后,如圖2,為線(xiàn)段上一點(diǎn),若一動(dòng)點(diǎn)從點(diǎn)出發(fā),先沿方向運(yùn)動(dòng),到達(dá)點(diǎn)后再沿斜坡方向運(yùn)動(dòng)到達(dá)點(diǎn),若該動(dòng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)的速度是它在斜坡上運(yùn)動(dòng)速度的2倍,試確定斜坡的坡度,使得該動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)所用的時(shí)間最短。(要求,簡(jiǎn)述確定點(diǎn)位置的方法,但不要求證明。)

查看答案和解析>>

同步練習(xí)冊(cè)答案