【題目】如圖,AB是⊙O的直徑,點C,D分別在兩個半圓上(不與點A、B重合),AD、BD的長分別是方程x2﹣2x+(m2﹣2m+13)=0的兩個實數(shù)根.
(1)若∠ADC=15°,求CD的長;
(2)求證:AC+BC=CD.
【答案】(1);(2)見解析
【解析】
(1)根據(jù)AD、BD的長分別是方程x2﹣2x+(m2﹣2m+13)=0的兩個實數(shù)根,可以求得AD、BD的長,從而可以求得∠DBA和∠DAB的度數(shù),由∠ADC=15°,可以求得∠ABC的度數(shù),作輔助線DE⊥CD于點E,從而可以求得CD的長;(2)作輔助線DE⊥BC于點E,DF⊥CA交CA的延長線于點F,畫出相應(yīng)的圖形,然后進行靈活變化,即可證明所要證明的結(jié)論.
解:(1)∵AD、BD的長分別是方程x2﹣2x+(m2﹣2m+13)=0的兩個實數(shù)根,
∴△=,
又∵
∴m﹣1=0,得m=1,
∴ ,
解得,,
即AD=BD=,
∵AB是⊙O的直徑,點C,D分別在兩個半圓上(不與點A、B重合),
∴∠ADB=90°,
∴∠DAB=∠DBA=45°,
作DE⊥BC于點E,如下圖一所示,
∵∠ADC=15°,∠ADB=90°,
∴∠ABC=∠ADC=15°,∠CDB=75°,
∴∠DBE=∠DBA+∠ABC=60°,
∴∠DCE=180°﹣∠CDB﹣∠DBE=45°,
∵BD=,
∴DE=BDsin60°=,
∵∠DEC=90°,DE=,∠DCE=45°,
∴CD=;
(2)證明:作DE⊥BC于點E,DF⊥CA交CA的延長線于點F,如下圖二所示,
由(
∵∠DEC=∠ECA=∠CFD=90°,
∴四邊形CFDE是正方形,
∴DF=CE,
∵∠AFD=∠BFD=90°,DA=DB,
∴在Rt△AFD和Rt△BED中
∴Rt△AFD≌Rt△BED(HL),
∴BE=AF,
∴BC+AC=BE+CE+AC=AF+AC+CE=CF+CE=2CE,
∵,
∴BC+AC=2CE==,
即AC+BC=CD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個數(shù)中任取一個數(shù)作為a的值,再從余下的四個數(shù)中任取一個數(shù)作為b的值,則點P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩點的坐標(biāo)分別為(0,4),(0,2),點P為x軸正半軸上一動點,過點A作AP的垂線,過點B作BP的垂線,兩垂線交于點Q,連接PQ,M為線段PQ的中點.
(1)求證:A、B、P、Q四點在以M為圓心的同一個圓上;
(2)當(dāng)⊙M與x軸相切時,求點Q的坐標(biāo);
(3)當(dāng)點P從點(1,0)運動到點(2,0)時,請直接寫出線段QM掃過圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號是( 。
A.①②③⑤B.①③④C.①②③④D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為平面直角坐標(biāo)系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標(biāo)為( )
A.(-2,2)B.(-2,4)C.(-2,2)D.(2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 與 軸交于A、C兩點,與 軸交于點B,在拋物線的對稱軸上找一點Q,使△ABQ成為等腰三角形,則Q點的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知拋物線經(jīng)過坐標(biāo)原點O和 軸上另一點E,頂點M的坐標(biāo)為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在 軸的負(fù)半軸、 軸的正半軸上,且AD=2,AB=3.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)如圖1,將矩形ABCD以每秒1個單位長度的速度從所示的位置沿 軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為 秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①直接寫出P點坐標(biāo)。(用含t的代數(shù)式表示)
②當(dāng)t為多少時,P、N兩點重合?
③設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·貴港)如圖所示,正方形OEFG和正方形ABCD是位似圖形,點F的坐標(biāo)
為(-1,1),點C的坐標(biāo)為(-4,2),則這兩個正方形位似中心的坐標(biāo)是 _ ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個交點A,B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)若點M為拋物線上一動點,是否存在點M,使△ACM與△ABC的面積相等?若存在,求點M的坐標(biāo);若不存在,請說明理由.
(3)在x軸上是否存在點N使△ADN為直角三角形?若存在,確定點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com