如圖,已知點(diǎn)A與B的坐標(biāo)分別為(4,0),(0,2),求:
①直線AB的解析式;
②過點(diǎn)C(2,0)的直線(與x軸不重合)截坐標(biāo)軸于點(diǎn)P,若截得的小三角形△PCO與△AOB相似,試求點(diǎn)P的坐標(biāo).
分析:①利用待定系數(shù)法即可求得直線的解析式;
②分△COP∽△AOB或△POC∽△AOB兩種情況,利用相似三角形的對應(yīng)邊的比相等,即可求得OP的長,從而求得P的坐標(biāo).
解答:解:①設(shè)直線AB的解析式是y=kx+b,
根據(jù)題意得:
b=2
4k+b=0
,
解得:
b=2
k=-
1
2

則直線AB的解析式是:y=-
1
2
x+2;

②∵A的坐標(biāo)是(4,0),C的坐標(biāo)是:(2,0).則C是OA的中點(diǎn).
∴OA=4,OB=2,OC=2,
當(dāng)△COP∽△AOB時,
OC
OA
=
OP
OB
,即
2
4
=
OP
2
,
解得:OP=1.
∴P的坐標(biāo)是:(0,1)或(0,-1);
當(dāng)△POC∽△AOB時,
OC
OB
=
OP
OA
,即
2
2
=
OP
4
,
解得:OP=4,
則P的坐標(biāo)是:(0,4)或(0,-4).
故P的坐標(biāo)是:(0,1)或(0,-1)或(0,4)或(0,-4).
點(diǎn)評:本題考查了待定系數(shù)法求一次函數(shù)的解析式,以及相似三角形的性質(zhì),正確理解分兩種情況討論是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、畫圖并回答:
(1)如圖,已知點(diǎn)P在∠AOC的邊OA上,①過點(diǎn)P畫OA的垂線交OC于點(diǎn)B,②畫點(diǎn)P到OB的垂線段PM.

(2)指出上述作圖中哪一條線段的長度表示P點(diǎn)到OB邊的距離.
(3)比較PM與OP的大小并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)A與B的坐標(biāo)分別為(4,0),(0,2),求:
①直線AB的解析式;
②過點(diǎn)C(2,0)的直線(與x軸不重合)截坐標(biāo)軸于點(diǎn)P,若截得的小三角形△PCO與△AOB相似,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年上海市重固中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)A與B的坐標(biāo)分別為(4,0),(0,2),求:
①直線AB的解析式;
②過點(diǎn)C(2,0)的直線(與x軸不重合)截坐標(biāo)軸于點(diǎn)P,若截得的小三角形△PCO與△AOB相似,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年上海市浦東新區(qū)老港中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)A與B的坐標(biāo)分別為(4,0),(0,2),求:
①直線AB的解析式;
②過點(diǎn)C(2,0)的直線(與x軸不重合)截坐標(biāo)軸于點(diǎn)P,若截得的小三角形△PCO與△AOB相似,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案