【題目】A、B兩城相距600千米,一輛客車從A城開往B城,車速為每小時80千米,同時一輛出租車從B城開往A城,車速為毎小時100千米,設(shè)客車出時間為t.
(1)【探究】 若客車、出租車距B城的距離分別為y1、y2 , 寫出y1、y2關(guān)于t的函數(shù)關(guān)系式,并計算當(dāng)y1=200千米時y2的値.
(2)【發(fā)現(xiàn)】 設(shè)點C是A城與B城的中點,
(Ⅰ)哪個車會先到達C?該車到達C后再經(jīng)過多少小時,另一個車會到達C?
(Ⅱ)若兩車扣相距100千米時,求時間t.
(3)【決策】 己知客車和出租車正好在A,B之間的服務(wù)站D處相遇,此時出租車乘客小王突然接到開會通知,需要立即返回,此時小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車,到達A城后立刻返回B城(設(shè)出租車調(diào)頭時間忽略不計);
方案二:乘坐客車返回城.
試通過計算,分析小王選擇哪種方式能更快到達B城?
【答案】
(1)解:由已知,得y1=﹣80t+600,
令y1=0,即﹣80t+600=0,解得t= ,
故y1=﹣80t+600(0≤t≤ ).
y2=100t,
令y2=600,即100t=600,解得t=6,
故y2=100t(0≤t≤6).
當(dāng)y1=200時,即200=﹣80t+600,解得t=5,
當(dāng)t=5時,y2=100×5=500.
故當(dāng)y1=200千米時y2的値為500.
(2)解:(Ⅰ)∵100>60,
∴出租車先到達C.
客車到達C點需要的時間:600﹣80t1= ,解得t1= ;
出租車到達C點需要的時間:100t2= ,解得t2=3.
﹣3= (小時).
所以出租車到達C后再經(jīng)過 小時,客車會到達C.
(Ⅱ)兩車相距100千米,分兩種情況:
①y1﹣y2=100,即600﹣80t﹣100t=100,
解得:t= ;
②y2﹣y1=100,即100t﹣(600﹣80t)=100,
解得:t= .
綜上可知:兩車相距100千米時,時間t為 或 小時.
(3)解:兩車相遇,即80t+100t=600,解得t= ,
此時AD=80× = (千米),BD=600﹣ = (千米).
方案一:t1=( +600)÷100= (小時);
方案二:t2= ÷80= (小時).
∵t1>t2,
∴方案二更快
【解析】探究:根據(jù)路程=速度×?xí)r間,即可得出y1、y2關(guān)于t的函數(shù)關(guān)系式,根據(jù)關(guān)系式算出y1=200千米時的時間t,將t代入y2的解析式中即可得出結(jié)論;發(fā)現(xiàn):(Ⅰ)根據(jù)出租車的速度大于客車的速度可得出出租車先到達C點,套用(1)中的函數(shù)關(guān)系式,令y=300即可分別算出時間t1和t2 , 二者做差即可得出結(jié)論;(2)兩車相距100千米,分兩種情況考慮,解關(guān)于t的一元一次方程即可得出結(jié)論;決策:根據(jù)時間=路程÷速度和,算出到達點D的時間,再根據(jù)路程=速度×?xí)r間算出AD、BD的長度,結(jié)合時間=路程÷速度,即可求出兩種方案各需的時間,兩者進行比較即可得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料: 小騰遇到這樣一個問題:如圖1,在△ABC中,點D在線段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的長.
小騰發(fā)現(xiàn),過點C作CE∥AB,交AD的延長線于點E,通過構(gòu)造△ACE,經(jīng)過推理和計算能夠使問題得到解決(如圖 2).
請回答:求∠ACE的度數(shù),AC的長.
參考小騰思考問題的方法,解決問題:
如圖 3,在四邊形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC與BD交于點E,AE=2,BE=2ED,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( )
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點B坐標(biāo)為(8,4),將矩形OABC繞點O逆時針旋轉(zhuǎn),使點B落在y軸上的點B′處,得到矩形OA′B′C′,OA′與BC相交于點D,則經(jīng)過點D的反比例函數(shù)解析式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點A,C的坐標(biāo)分別為(2,0),(0,2),D是x軸正半軸上的一點(點D在點A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點在第一象限),連接FC交AB的延長線于點G.若反比例函數(shù)的圖象經(jīng)過點E,G兩點,則k的值為 ______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù)y=的下列說法正確的是( )
① 該函數(shù)的圖象在第二、四象限;
② A(x1、y1)、B(x2、y2)兩點在該函數(shù)圖象上,若x1<x2,則y1<y2;
③ 當(dāng)x>2時,則y>-2;
④ 若反比例函數(shù)y=與一次函數(shù)y=x+b的圖象無交點,則b的范圍是-4<b<4.
A. ① ③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com