【題目】在△ABC中,AB=15cm,AC=13cm,高AD=12cm.求△ABC的面積.

【答案】解:(1)如圖1,銳角△ABC中,AB=15,AC=13,BC邊上高AD=12在Rt△ACD中AB=13,AD=12,
由勾股定理得
CD2=AC2﹣AD2=132﹣122=25,
∴C=5,
在Rt△ABD中,AB=15,AD=12,
由勾股定理得
BD2=AB2﹣AD2=152﹣122=81,
∴BD=9,
∴BC的長(zhǎng)為BD+DC=9+5=14,
△ABC的面積: ×BC×AD= ×14×12=84;
2)鈍角△ABC中,AB=15,AC=13,BC邊上高AD=12
在Rt△ACD中,AC=13,AD=12,由勾股定理得
CD2=AC2﹣AD2=132﹣122=25,
∴CD=5,
在Rt△ABD中,AB=15,AD=12,由勾股定理得
BD2=AB2﹣AD2=152﹣122=81,
∴BD=9,
∴BC=DB﹣CD=9﹣5=4.
△ABC的面積: ×BC×AD= ×4×12=24;綜上所述:△ABC的面積為84cm2或24cm2


【解析】分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD,CD,再由圖形求出BC,在銳角三角形中,BC=BD+CD,在鈍角三角形中,BC=CD﹣BD,分別計(jì)算出CD的長(zhǎng),再利用三角形的面積公式計(jì)算出面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)A(4,3),B(3,1),C(1,2).

(1)在平面直角坐標(biāo)系中分別描出A,B,C三點(diǎn),并順次連接成△ABC;
(2)將△ABC向左平移6個(gè)單位,再向下平移5個(gè)單位得到△A1B1C1;畫(huà)出△A1B1C1 , 并寫(xiě)出點(diǎn)A1 , B1 , C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx2a≠0)的圖象經(jīng)過(guò)點(diǎn)(﹣1,4),則代數(shù)式3a+b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一個(gè)平面去截一個(gè)幾何體,截面形狀有圓、三角形,那么這個(gè)幾何體可能是。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將方程xx3+10化為一元二次方程的一般形式是( 。

A.x23x+10B.x2+3x+10

C.x23x10D.x2+x30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程3x28x100的一次項(xiàng)系數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(2x,3x-1)是平面直角坐標(biāo)系上的點(diǎn)。

(1)若點(diǎn)P在第一象限的角平分線上,求x的值;

(2)若點(diǎn)P在第三象限,且到兩坐標(biāo)軸的距離之和為11,求x的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

(1)出發(fā)2秒后,求PQ的長(zhǎng);
(2)從出發(fā)幾秒鐘后,△PQB第一次能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).

(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案