【題目】一批貨物準備運往某地,有甲、乙、丙三輛卡車可雇用.已知甲、乙、丙三輛車每次運貨量不變,且甲、乙兩車單獨運完這批貨物分別用次;甲、丙兩車合運相同次數(shù),運完這批貨物,甲車共運噸;乙、丙兩車合運相同次數(shù),運完這批貨物乙車共運噸,現(xiàn)甲、乙、丙合運相同次數(shù)把這批貨物運完,貨主應付甲車主的運費為___________ 元.(按每噸運費元計算)
【答案】
【解析】
根據(jù)“甲、乙兩車單獨運這批貨物分別用2a次、a次能運完”甲的效率應該為
,乙的效率應該為,那么可知乙車每次貨運量是甲車的2倍根據(jù)“若甲、丙兩車合運相同次數(shù)運完這批貨物時,甲車共運了180噸;若乙、丙兩車合運相同次數(shù)運完這批貨物時,乙車共運了270噸.”這兩個等量關系來列方程.
設這批貨物共有T噸,甲車每次運t甲噸,乙車每次運t乙噸,
∵2at甲=T,at乙=T,∴t甲:t乙=1:2,
由題意列方程:
t乙=2t甲,
∴ 解得T=540.
∵甲車運180噸,丙車運540180=360噸,
∴丙車每次運貨量也是甲車的2倍,
∴甲車車主應得運費 (元),
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,直線MN與AB、CD分別交于點E、F,FG平分∠EFD,EG⊥FG于點G,若∠CFN=110°,則∠BEG=( 。
A. 20°B. 25°C. 35°D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)Y=-x2-x+2圖象與x軸交于A、B兩點,與y軸交于C點,點D(m,n)是拋物線在第二象限的部分上的一動點,則四邊形OCDA的面積的最大值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校環(huán)保小組的同學隨機調(diào)查了某小區(qū)10戶家庭一周內(nèi)使用環(huán)保方便袋的數(shù)量,數(shù)據(jù)如下(單位:只):6,5,7,8,7,5,7,10,6,9,利用學過的統(tǒng)計知識,根據(jù)上述數(shù)據(jù)估計該小區(qū)200戶家庭一周內(nèi)共需要環(huán)保方便袋約( )
A. 200只;B. 1400只;C. 9800只;D. 14000只.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平面直角坐標系,拋物線與軸交于點A(-2,0)和點B(4,0) .
(1)求這條拋物線的表達式和對稱軸;
(2)點C在線段OB上,過點C作CD⊥軸,垂足為點C,交拋物線與點D,E是BD中點,聯(lián)結(jié)CE并延長,與軸交于點F.
①當D恰好是拋物線的頂點時,求點F的坐標;
②聯(lián)結(jié)BF,當△DBC的面積是△BCF面積的時,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(點在點的左側(cè)),交軸于點,將直線以點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn),交軸于點,交拋物線于另一點.直線的解析式為:
點是第一象限內(nèi)拋物線上一點,當的面積最大時,在線段上找一點(不與重合),使的值最小,求出點的坐標,并直接寫出的最小值;
如圖,將沿射線方向以每秒個單位的速度平移,記平移后的為,平移時間為秒,當為等腰三角形時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地之間的路程為2480米,甲、乙兩人分別從A、B兩地出發(fā),相向而行,已知甲先出發(fā)4分鐘后,乙才出發(fā),他們兩人在A、B之間的C地相遇,相遇后,甲立即返回A地,乙繼續(xù)向A地前行甲到達A地時停止行走,乙到達A地時也停止行走,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關系如圖所示,則乙到達A地時,甲與A地相距的路程是___米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知二次函數(shù)y=ax2﹣2ax﹣3a(a>0)圖象與x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,頂點為D.
(1)求點A,B的坐標;
(2)若M為對稱軸與x軸交點,且DM=2AM.
①求二次函數(shù)解析式;
②當t﹣2≤x≤t時,二次函數(shù)有最大值5,求t值;
③若直線x=4與此拋物線交于點E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點),將圖象P沿直線x=4翻折,得到圖象Q,又過點(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com