【題目】如圖,、是的中點(diǎn),平分,下列結(jié)論:①平分;②;③;④,其中正確的結(jié)論有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
【答案】A
【解析】
過(guò)點(diǎn)E作EF⊥AD于F,根據(jù)角平分線的性質(zhì)及判定即可證出①;根據(jù)平行線的判定證出DC∥AB,然后根據(jù)平行線的性質(zhì)和角平分線的定義即可判斷②;根據(jù)直角三角形的性質(zhì)證出ED平分∠CEF,再根據(jù)角平分線的性質(zhì)可得CD=FD,同理可得AB=AF,從而判斷③;根據(jù)兩個(gè)三角形等高但不等底即可判斷④.
解:過(guò)點(diǎn)E作EF⊥AD于F
∵平分,
∴EF=EB,∠DAE=∠BAE=∠DAB
∵是的中點(diǎn),
∴EB=EC
∴EF=EC
∴DE平分∠ADC,故①正確;
∴∠CDE=∠ADE=∠CDA,
∵
∴∠B+∠C=180°
∴DC∥AB
∴∠CDA+∠DAB=180°
∴∠DAE+∠ADE=∠DAB+∠CDA=(∠DAB+∠CDA)=90°
∴∠DEA=180°-(∠DAE+∠ADE)=90°
∴,故②正確;
∵∠FED=90°-∠ADE=90°-∠CDE=∠CED
∴ED平分∠CEF
∴CD=FD
同理可得:AB=AF
∴AD=AF+FD=AB+CD,故③正確;
∵EF=EB,即△ADE和△ABE等高
但AD≠AB
∴,故④錯(cuò)誤.
正確的有3個(gè)
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,在5天中,兩臺(tái)機(jī)床每天出次品的數(shù)量如下表:
甲 | 0 | 1 | 2 | 0 | 2 |
乙 | 2 | 1 | 0 | 1 | 1 |
關(guān)于以上數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差,說(shuō)法不正確的是
A. 甲、乙的平均數(shù)相等B. 甲、乙的眾數(shù)相等
C. 甲、乙的中位數(shù)相等D. 甲的方差大于乙的方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的2倍時(shí),則稱此三角形為“倍角三角形”,其中角稱為“倍角”.若“倍角三角形”中有一個(gè)內(nèi)角為36°,則這個(gè)“倍角三角形”的“倍角”的度數(shù)可以是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,的平分線交于點(diǎn),平分.給出下列結(jié)論:①;②;③;④;⑤.其中正確的結(jié)論是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象相交于A(2,3)、B(a,1)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)求證:AB=2BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△A′B′C,使得點(diǎn)A′恰好落在AB上,則旋轉(zhuǎn)角度為( 。
A.30°B.60°C.90°D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.
(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);
(2)如圖2,過(guò)點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線l為y=x,過(guò)點(diǎn)A1(1,0)作A1B1⊥x軸,與直線l交于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2,再作A2B2⊥x軸,交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3…按照這樣的作法進(jìn)行下去,則點(diǎn)A20的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com