【題目】在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線經(jīng)過點、

(1)、滿足的關(guān)系式及的值.

(2)當(dāng)時,若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時,在拋物線上是否存在點,使的面積為1?若存在,請求出符合條件的所有點的坐標(biāo);若不存在,請說明理由.

【答案】(1);;(2);(3)存在,點.

【解析】

(1)求出點、的坐標(biāo),即可求解;

(2)當(dāng)時,若的函數(shù)值隨的增大而增大,則函數(shù)對稱軸,而,即:,即可求解;

(3)過點作直線,作軸交于點,作于點,,則,即可求解.

(1),令,則,令,則

故點、的坐標(biāo)分別為、,則,

則函數(shù)表達式為:,

將點坐標(biāo)代入上式并整理得:

(2)當(dāng)時,若的函數(shù)值隨的增大而增大,

則函數(shù)對稱軸,而

即:,解得:

故:的取值范圍為:;

(3)當(dāng)時,二次函數(shù)表達式為:

過點作直線,作軸交于點,作于點,

,∴,

,

,

在直線下方作直線,使直線與直線等距離,

則直線與拋物線兩個交點坐標(biāo),分別與點組成的三角形的面積也為1,

故:

設(shè)點,則點,

即:

解得:,

故點 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB2,AD4,將矩形ABCD繞點C順時針旋轉(zhuǎn)至矩形EGCF(其中E、G、F分別與A、BD對應(yīng)).

1)如圖1,當(dāng)點G落在AD邊上時,直接寫出AG的長為   ;

2)如圖2,當(dāng)點G落在線段AE上時,ADCG交于點H,求GH的長;

3)如圖3,記O為矩形ABCD對角線的交點,S為△OGE的面積,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中, ,點分別是邊、的中點,將繞著點旋轉(zhuǎn),點旋轉(zhuǎn)后的對應(yīng)點分別為點,當(dāng)直線經(jīng)過點時,線段的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB2AD4,將矩形ABCD繞點C順時針旋轉(zhuǎn)至矩形EGCF(其中E、GF分別與A、B、D對應(yīng)).

1)如圖1,當(dāng)點G落在AD邊上時,直接寫出AG的長為   ;

2)如圖2,當(dāng)點G落在線段AE上時,ADCG交于點H,求GH的長;

3)如圖3,記O為矩形ABCD對角線的交點,S為△OGE的面積,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某化工材料經(jīng)銷公司購進一種化工材料若干千克,價格為每千克40元,物價部門規(guī)定其銷售單價不高于每千克70元,不低于每千克40元.經(jīng)市場調(diào)查發(fā)現(xiàn),日銷量y(千克)是銷售單價x()的一次函數(shù),且當(dāng)x70時,y80;x60時,y100.在銷售過程中,每天還要支付其他費用350元.

(1)yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)求該公司銷售該原料日獲利w()與銷售單價x()之間的函數(shù)關(guān)系式;

(3)當(dāng)銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有顏色不同的黑、白兩種球共60個,它們除顏色不同外,其余都相同,王穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中攪勻,經(jīng)過大量重復(fù)上述摸球的過程,發(fā)現(xiàn)摸到白球的頻率定于0.25.

(1)請估計摸到白球的概率將會接近________;

(2)計算盒子里白、黑兩種顏色的球各有多少個?

(3)如果要使摸到白球的概率為,需要往盒子里再放入多少個白球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組對角互補的四邊形叫做互補四邊形,如圖,在互補四邊形紙片ABCD中,BABC,ADCD,∠A=∠C90°,∠ADC30°.將紙片先沿直線BD對折,再將對折后的紙片從一個頂點出發(fā)的直線裁剪,把剪開的紙片打開后鋪平,若鋪平后的紙片中有一個面積為4的平行四邊形,則CD的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高內(nèi)容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽對全年級同學(xué)成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合統(tǒng)計圖中的信息,回答下列問題

1)扇形統(tǒng)計圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為 ,并將條形統(tǒng)計圖補充完整.

2)此次比賽有四名同學(xué)活動滿分,分別是甲、乙、丙、丁現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法求出選中的兩名同學(xué)恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=-3x+

1)該二次函數(shù)圖象與x軸的交點坐標(biāo)是______;

2)將y=化成y=ax-h2+k的形式,并寫出頂點坐標(biāo);

3)在坐標(biāo)軸中畫出此拋物線的大致圖象;

4)寫出不等式0的解集.

查看答案和解析>>

同步練習(xí)冊答案