【題目】(本題滿分6分)某公司調(diào)查某中學學生對其環(huán)保產(chǎn)品的了解情況,隨機抽取該校部分學生進行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次問卷共隨機調(diào)查了 名學生,扇形統(tǒng)計圖中m= .
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖;
(3)若該校有1000名學生,估計選擇“非常了解”、“比較了解”共約有多少人?
【答案】(1)50; 32;(2)見解析;(3)560人.
【解析】(1)由條形統(tǒng)計圖和扇形統(tǒng)計圖可知,用“非常了解”的人數(shù)為8人除以所占比例為16%,即可求得總?cè)藬?shù);“一般了解”的人數(shù)為16人除以總?cè)藬?shù)即可求所占比例;
(2)用總?cè)藬?shù)減去B、C、D部分的人數(shù)求出A部分的人數(shù),然后補全條形統(tǒng)計圖即可;
(3)先根據(jù)扇形統(tǒng)計圖得到部分學生“非常了解”和“比較了解”的人數(shù)占樣本總?cè)藬?shù)的比例,再由樣本估計總體即可求解.
(1)8÷16%=50人;
16÷50=32%.
(2)50-20-16-6=8人.如圖,
(3)1000×(16%+40%)=560人.
科目:初中數(shù)學 來源: 題型:
【題目】以下是一位同學所做的有理數(shù)運算解題過程的一部分:
(1)請你在上面的解題過程中仿照給出的方式,圈畫出他的錯誤之處,并將正確結(jié)果寫在相應(yīng)的圈內(nèi);
(2)請就此題反映出的該同學有理數(shù)運算掌握的情況進行具體評價,并對相應(yīng)的有效避錯方法給出你的建議。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【題目】如圖①,一次函數(shù) y= x - 2 的圖像交 x 軸于點 A,交 y 軸于點 B,二次函數(shù) y= x2 bx c的圖像經(jīng)過 A、B 兩點,與 x 軸交于另一點 C.
(1)求二次函數(shù)的關(guān)系式及點 C 的坐標;
(2)如圖②,若點 P 是直線 AB 上方的拋物線上一點,過點 P 作 PD∥x 軸交 AB 于點 D,PE∥y 軸交 AB 于點 E,求 PD+PE 的最大值;
(3)如圖③,若點 M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點 M的坐標.
① ② ③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形中,點是直線上的一個動點,連接,將線段繞點順時針旋轉(zhuǎn)得到線段,連接.
(1)如圖1,若點在線段上,
①直接寫出的度數(shù)為 °;
②求證:;
(2)如圖2,若點在的延長線上,,,
①依題意補全圖2;
②直接寫出線段的長度為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在電線桿CD處引拉線CE,CF固定電線桿,拉線CE和地面所成的角∠CED=67°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為37°,求拉線CE的長(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tsn37°≈).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,AC是對角線,AB=8cm,BC=6cm.點P從點A出發(fā),沿AC方向勻速運動,速度為2cm/s,同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s.過點P作PM⊥AD于點M,連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:
(1)當t為何值時,點Q在線段AC的中垂線上;
(2)寫出四邊形PQAM的面積為S(cm2)與時間t的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S四邊形PQAM:S矩形ABCD=9:50?若存在,求出t的值;若不存在,請說明理由;
(4)當t為何值時,△APQ與△ADC相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形OABC是長方形,O為原點,點A在x軸上,點C在y軸上且A(10,0),C(0,6),點D在AB邊上,將△CBD沿CD翻折,點B恰好落在OA邊上點E處.
(1)求點E的坐標;
(2)求折痕CD所在直線的函數(shù)表達式;
(3)請你延長直線CD交x軸于點F. ①求△COF的面積;
②在x軸上是否存在點P,使S△OCP=S△COF?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=α.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)試說明:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當∠BOC為多少度時,△AOD是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com