【題目】下列選項(xiàng)中,不是同類項(xiàng)的是(   )

A. -1和0 B. -x2y和3yx2 C. -2xy2和2x2yz D. -m2和6m2

【答案】C

【解析】A. 兩個(gè)常數(shù)項(xiàng)是同類項(xiàng);

B. 相同字母的次數(shù)不同,故不是同類項(xiàng);

C. 是同類項(xiàng);

D. 是同類項(xiàng)。

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解不等式,并求出它的自然數(shù)解.

(2)解不等式,并把解集在數(shù)軸上表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張長為8cm,寬為6cm的矩形紙片上,現(xiàn)要剪下一個(gè)腰長為5cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與矩形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在矩形的邊上).則剪下的等腰三角形的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(-1,0),對(duì)稱軸為直線x=2,下列結(jié)論:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>-1時(shí),y的值隨x值的增大而增大.

其中正確的結(jié)論有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,A FCE,且交BC于點(diǎn)F

(1)求證:ABF≌△CDE;

(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們?cè)谶@棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB2m,臺(tái)階AC的坡度為1,且BC,E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC

2AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.

【拓展延伸】

3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盛印染廠生產(chǎn)某種產(chǎn)品,每產(chǎn)品廠價(jià)為30元,成本價(jià)為20(不含污水處理部分費(fèi)用)在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計(jì)了兩種對(duì)污水進(jìn)行處理的方案并準(zhǔn)備實(shí)施

方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用原料費(fèi)用2元,并且每月排污設(shè)備損耗等其它各項(xiàng)開支27000元

方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費(fèi)

(1)若實(shí)施方案一,為了確保印染廠有利潤,則每月的產(chǎn)量應(yīng)該滿足怎樣的條件?

(2)你認(rèn)為該工廠應(yīng)如何選擇污水處理方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】許多命題都是由____________兩部分組成.其中題設(shè)是____________,結(jié)論是___________

查看答案和解析>>

同步練習(xí)冊(cè)答案