已知x=3是關于x的不等式的解,求a的取值范圍.
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AB=AC,D是BC的中點,連結(jié)AD,在AD的延長線上取一點E,連結(jié)BE,CE.
(1)求證:△ABE≌△ACE
(2)當AE與AD滿足什么數(shù)量關系時,四邊形ABEC是菱形?
并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
9.6 解:∵四邊形ABCD是平行四邊形(已知),
∴OA=OC(平行四邊形的對角線相互平分),AB∥CD(平行四邊形的對邊相互平行),
∴∠DCO=∠BAC(兩直線平行,內(nèi)錯角相等);
在△AFO和△CEO中,
,
則△AFO≌△CEO(ASA),
∴OF=OE,CE=AF(全等三角形的對應邊相等);
又∵AD=BC(平行四邊形的對邊相等),AB=4,AD=3,OF=1.3,
∴四邊形BCEF的周長為:BC+EC+OE+OF+BF=AD+AF+2OF+BF=AD+AB+2OF=9.6;
故答案是:9.6.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知:∠MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線 m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=120°.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試證明FD=FE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是()
A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進度,想在小山的另一側(cè)同時施工.為了使山的另一側(cè)的開挖點C在AB的延長線上,設想過C點作直線AB的垂線L,過點B作一直線(在山的旁邊經(jīng)過),與L相交于D點,經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點多遠的C處開挖?(≈1.414,精確到1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,直線AB∥CD,一個含60°角的直角三角板EFG(∠E=60°)的直角頂點F在直線AB上,斜邊EG與AB相交于點H,CD與FG相交于點M.若∠AHG=50°,則∠FMD等于( 。
A. 10° B. 20° C. 30° D. 50°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com