【題目】某中學(xué)為了豐富學(xué)生的課外生活,根據(jù)實(shí)際情況開設(shè)特色活動(dòng)課,有A:合唱團(tuán),B:話劇社,C:舞蹈,D:美術(shù)四種項(xiàng)目.為了解學(xué)生喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中信息解答下列問題:
(1)這次調(diào)查中總共抽取了_______人,在扇形統(tǒng)計(jì)圖中,表示B話劇社所對(duì)應(yīng)的圓心角是_______度;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)已知該校有2000人,估計(jì)全校喜歡話劇的人數(shù)是多少?
【答案】(1)100人,72°;(2)見解析;(3)400人
【解析】
(1)用D項(xiàng)目的人數(shù)除以該項(xiàng)目所占的百分比即可得到樣本容量;用360°乘以B話劇社的百分比即可;
(2)用樣本容量分別減去A、C、D項(xiàng)目的人數(shù)得到B項(xiàng)目人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;
(3)用全校總?cè)藬?shù)×樣本中喜歡話劇的人數(shù)所占的百分比即可.
(1)樣本容量=28÷28%=100,B話劇社所對(duì)應(yīng)的圓心角=360°×(1-8%-28%-44%)=360°×20%=72°.
故答案為:100,72°;
(2)B項(xiàng)目的人數(shù)=100﹣44﹣8﹣28=20(人),
如圖,
(3)∵參加話劇社的占20%,∴2000×20%=400(人).
答:估計(jì)全校有400人喜歡話。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF =S△BDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y1=2x-4與y2=-2x+8的圖象,觀察圖象并回答問題:
(1)x取何值時(shí),2x-4>0?
(2)x取何值時(shí),-2x+8>0?
(3)x取何值時(shí),2x-4>0與-2x+8>0同時(shí)成立?
(4)求函數(shù)y1=2x-4與y2=-2x+8的圖象與x軸所圍成的三角形的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共個(gè),小李做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,如表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù) | |||||||
摸到白球的次數(shù) | |||||||
摸到白球的頻率 |
請(qǐng)估計(jì):當(dāng)實(shí)驗(yàn)次數(shù)為次時(shí),摸到白球的頻率將會(huì)接近________;(精確到)
假如你摸一次,你摸到白球的概率(摸到白球)________;
如何通過增加或減少這個(gè)不透明盒子內(nèi)球的具體數(shù)量,使得在這個(gè)盒子里每次摸到白球的概率為?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把帶有指針的圓形轉(zhuǎn)盤、分別分成等份、等份的扇形區(qū)域,并在每一個(gè)小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示).小明、小樂兩個(gè)人玩轉(zhuǎn)盤游戲,游戲規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),若指針?biāo)竷蓞^(qū)域的數(shù)字之積為的倍數(shù),則小明勝;否則,小樂勝.(若有指針落在分割線上,則無效,需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤)
試用列表或畫樹狀圖的方法,求小明獲勝的概率;
請(qǐng)問這個(gè)游戲規(guī)則對(duì)小明、小樂雙方公平嗎?做出判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是長(zhǎng)方形,將長(zhǎng)方形ABCD折疊,如圖①所示,點(diǎn)B落在AD邊上的點(diǎn)E處,折痕為FG,將圖②折疊,點(diǎn)C與點(diǎn)E重合,折痕為PH.
(1)在圖②中,證明:EH=EP;
(2)若EF=6,EH=8,FH=10,求長(zhǎng)方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(3,0),對(duì)稱軸是直線x=﹣2,與y軸的交點(diǎn)(0,﹣3).
(1)求拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo);
(2)求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】密碼的使用在現(xiàn)代社會(huì)是極其重要的.現(xiàn)有一種密碼的明文(真實(shí)文),其中的字母是按計(jì)算機(jī)鍵盤順序分別與26個(gè)自然數(shù)1,2,3……25,26對(duì)應(yīng)(見下表).設(shè)明文的任一字母所對(duì)應(yīng)的自然數(shù)為x,且通過某種規(guī)定的對(duì)應(yīng)運(yùn)算把x轉(zhuǎn)化為對(duì)應(yīng)的自然數(shù)x',x'對(duì)應(yīng)的字母為密文.
例如,有一種譯碼方法按照以下變換實(shí)現(xiàn):
x→x',其中x'是(3x+2)被26除所得余數(shù)與1之和(1≤x≤26).若x=1時(shí),x'=6,即明文Q譯為密文Y;
若x=10時(shí),x'=7,即明文P譯為密文U.現(xiàn)有某種變換,將明文字母對(duì)應(yīng)的自然數(shù)x變換為密文字母對(duì)應(yīng)的自然數(shù)x':x→x',x'為(3x+m)被26除所得余數(shù)與1之和(1≤x≤26,1≤m≤26).已知運(yùn)用此變換,明文V譯為密文M.
(1)求此變換中m的值;
(2)求明文VKHA對(duì)應(yīng)的密文.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com