【題目】某商店兩次購(gòu)進(jìn)一批同型號(hào)的熱水壺和保溫杯,第一次購(gòu)進(jìn) 12 個(gè)熱水壺和 15 個(gè)保溫杯,共用去資金 2850 元,第二次購(gòu)進(jìn) 20 個(gè)熱水壺和 30 個(gè)保溫杯,用去資金 4900元(購(gòu)買同一商品的價(jià)格不變)
(1)求每個(gè)熱水壺和保溫杯的采購(gòu)單價(jià)各是多少元?
(2)若商場(chǎng)計(jì)劃再購(gòu)進(jìn)同種型號(hào)的熱水壺和保溫杯共 80 個(gè),求所需購(gòu)貨資金 w(元) ,購(gòu)買熱水壺的數(shù)量 m(個(gè))的函數(shù)表達(dá)式.
(3)在(2)的基礎(chǔ)上,若準(zhǔn)備購(gòu)買保溫杯的數(shù)量是熱水壺?cái)?shù)量的 3 倍,則該商店需要準(zhǔn)備多少元的購(gòu)貨資金?
【答案】(1)熱水壺的采購(gòu)價(jià)是200元,保溫杯的采購(gòu)單價(jià)30元;(2)w=170m+2400;(3) 5800元.
【解析】
(1)設(shè)每個(gè)熱水壺的采購(gòu)價(jià)是x元,每個(gè)保溫杯的采購(gòu)單價(jià)y元,根據(jù)采購(gòu)價(jià)格=單價(jià)×數(shù)量,可列出關(guān)于x、y的二元一次方程組,解方程組即可得出結(jié)論;(2)根據(jù)熱水壺為m個(gè),保溫杯為(80-m) 個(gè),采購(gòu)價(jià)格=單價(jià)×數(shù)量列式計(jì)算即可;(3)根據(jù)總數(shù)為80個(gè),保溫杯的數(shù)量是熱水壺?cái)?shù)量的3倍解答即可.
解:(1)設(shè)每個(gè)熱水壺的采購(gòu)價(jià)是x元,每個(gè)保溫杯的采購(gòu)單價(jià)y元,
根據(jù)題意,得,
解得.
答:每個(gè)熱水壺的采購(gòu)價(jià)是200元,每個(gè)保溫杯的采購(gòu)單價(jià)30元.
(2)w=200m+30(80-m)=170m+2400,
∴購(gòu)貨資金 w與購(gòu)買熱水壺的數(shù)量 m的函數(shù)表達(dá)式為: w=170m+2400;
(3) 設(shè)購(gòu)買熱水壺?cái)?shù)量為a,則購(gòu)買熱水壺的數(shù)量為3a,則
3a+a=80, ∴a=20,3a=60,
∴20×200+30×60=5800,
∴該商店需要準(zhǔn)備多少元的購(gòu)貨資金為5800元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.
(1)在圖(1)中,D是BC邊上的中點(diǎn),判斷DE+DF和BG的關(guān)系,并說(shuō)明理由.
(2)在圖(2)中,D是線段BC上的任意一點(diǎn),DE+DF和BG的關(guān)系是否仍然成立?如果成立,證明你的結(jié)論;如果不成立,請(qǐng)說(shuō)明理由.
(3)在圖(3)中,D是線段BC延長(zhǎng)線上的點(diǎn),探究DE、DF與BG的關(guān)系.(不要求證明,直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,AB 兩點(diǎn)的坐標(biāo)分別為 A(1,4),B(5,1),P,Q 分別是 x 軸,y 軸 上兩個(gè)動(dòng)點(diǎn),則四邊形 ABPQ 的周長(zhǎng)最小值為( )
A.5B.5 C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品現(xiàn)在的售價(jià)為每件元,每星期可賣出件,市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)元,每星期要少賣出件;每降價(jià)元,每星期可多賣出件,已知商品的進(jìn)價(jià)為每件元,如何定價(jià)才能使利潤(rùn)最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若點(diǎn)P從點(diǎn)A沿AB邊向B點(diǎn)以1 cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)沿BC邊向點(diǎn)C以2 cm/s的速度移動(dòng),兩點(diǎn)同時(shí)出發(fā).
(1)問(wèn)幾秒后,△PBQ的面積為8cm?
(2)出發(fā)幾秒后,線段PQ的長(zhǎng)為4cm ?
(3)△PBQ的面積能否為10 cm2?若能,求出時(shí)間;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形,、分別平分四邊形的外角和,設(shè),.
(1)如圖1,若,求的度數(shù);
(2)如圖1,若與相交于點(diǎn),,請(qǐng)寫(xiě)出、所滿足的等量關(guān)系式;
(3)如圖2,若,判斷、的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com