【題目】(1)如圖①,圓的半徑為2,圓內(nèi)有一點,,若弦過點,則弦長度的最大值為______;最小值為______;
(2)如圖②,將放在如圖所示的平面直角坐標系中,點與原點重合,點在軸的正半軸上,,,.在軸上方是否存在點,使得,且?若存在,請求出點的坐標;若不存在,請說明理由;
(3)如圖③,是李叔叔家的一塊空地示意圖,其中,米,米.現(xiàn)在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.若李叔叔想建的魚塘是四邊形,且滿足,你認為李叔叔的想法能實現(xiàn)嗎?若能,求出這個四邊形魚塘面積和周長的最大值;若不能,請說明理由.
【答案】(1)4,;(2)存在,坐標為,;(3)能,這個四邊形魚塘面積最大值為()平方米,周長的最大值為340米.
【解析】
(1)當AB為直徑時,弦最長;當OP⊥AB時,AB最短,用垂徑定理求解即可;
(2)以為圓心,長為半徑作,過作軸的平行線交于,,點,即為所求的點;
(3)由題意得AB=100,∠ADB=60°,即點D在優(yōu)弧上運動,當點D運動到優(yōu)弧的中點時,四邊形魚塘面積和周長達到最大值,此時為等邊三角形,求出AD和DH長,即可得出這個四邊形魚塘面積和周長的最大值.
解:(1)當為直徑時,弦最長,AB=4,
如圖①,當時,最短,連接,
,,
,;
故答案為:4,;
(2)存在,理由如下:
如圖②,作于點,
,,,
,,
,,
以為圓心,長為半徑作,
過作軸的平行線交于,,
則,且,
點,符合題意,
點的坐標為,
存在點,坐標為,;
(3)能,理由如下:如圖③,
,米,米,
米.
作,使得,,以為圓心,長為半徑畫,
,
點在優(yōu)弧上運動,
當點是優(yōu)弧的中點時,四邊形面積和周長取得最大值,
連接并延長交于點,
則,,
,
,
為等邊三角形,
,
,
,
這個四邊形魚塘面積最大值為(平方米),
這個四邊形魚塘周長的最大值為(米).
科目:初中數(shù)學 來源: 題型:
【題目】某校開發(fā)了“書畫、器樂、戲曲、棋類”四大類興趣課程.為了解全校學生對每類課程的選擇情況,隨機抽取了若干名學生進行調(diào)查(每人必選且只能選一類),先將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:
(1)本次隨機調(diào)查了多少名學生?
(2)補全條形統(tǒng)計圖中“書畫”、“戲曲”的空缺部分;
(3)若該校共有名學生,請估計全校學生選擇“戲曲”類的人數(shù);
(4)學校從這四類課程中隨機抽取兩類參加“全市青少年才藝展示活動”,用樹形圖或列表法求處恰好抽到“器樂”和“戲曲”類的概率.(書畫、器樂、戲曲、棋類可分別用字幕表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為慶祝建國周年,東營市某中學決定舉辦校園藝術(shù)節(jié).學生從“書法”、“繪畫”、“聲樂”、“器樂”、“舞蹈”五個類別中選擇一類報名參加.為了了解報名情況,組委會在全校隨機抽取了若干名學生進行問卷調(diào)查,現(xiàn)將報名情況繪制成如圖所示的不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學生?
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,求“聲樂”類對應扇形圓心角的度數(shù);
(4)小東和小穎報名參加“器樂”類比賽,現(xiàn)從小提琴、單簧管、鋼琴、電子琴四種樂器中隨機選擇一種樂器,用列表法或畫樹狀圖法求出他們選中同一種樂器的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為進一步提升教育教學質(zhì)量,調(diào)動學生學習的興趣,某校在七年級學生中開展了對語文、數(shù)學、英語、歷史、地理這五門課程的興趣愛好情況的調(diào)查,以便采取必要教學改革,激發(fā)學生對各學科的興趣愛好.隨機選取該年級部分學生進行調(diào)查,要求每名學生從中選出一門最感興趣的課程(每名學生只能選一門,不能多選),以下是根據(jù)調(diào)查結(jié)果繪制的不完整統(tǒng)計圖表:
課程代號 | |||||
課程名稱 | 語文 | |數(shù)學 | 英語 | 歷史 | 地理 |
最感興趣人數(shù) | 12 | 30 | 54 | 9 |
請你根據(jù)以上信息,解答下列問題:
(1)被調(diào)查學生的總數(shù)為______人,______,______;
(2)被調(diào)查學生中,最喜愛課程的“眾數(shù)”是______;
(3)若該年級共有800名學生,請估計該年級對語文最感興趣的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家具商場計劃購進某種餐桌、餐椅進行銷售,有關(guān)信息如表:
原進價(元/張) | 零售價(元/張) | 成套售價(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元購進的餐桌數(shù)量與用160元購進的餐椅數(shù)量相同.
(1)求表中a的值;
(2)若該商場購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進貨,才能獲得最大利潤?最大利潤是多少?
(3)由于原材料價格上漲,每張餐桌和餐椅的進價都上漲了10元,但銷售價格保持不變.商場購進了餐桌和餐椅共200張,應怎樣安排成套銷售的銷售量(至少10套以上),使得實際全部售出后,最大利潤與(2)中相同?請求出進貨方案和銷售方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)嘗試探究
如圖①,在中,,,點,分別是邊上的點,且.
①的值為________;
②直線與直線的位置關(guān)系為________;
(2)類比延伸
如圖②,若將圖①中的繞點順時針旋轉(zhuǎn),連接,則在旋轉(zhuǎn)的過程中,請判斷的值及直線與直線的位置關(guān)系,并說明理由;
(3)拓展運用
若,在旋轉(zhuǎn)過程中,當三點在同一直線上時,請直接寫出此時線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(提出問題)課間,一位同學拿著方格本遇人便問:“如圖所示,在邊長為1的小正方形組成的網(wǎng)格中,點A、B、C都是格點,如何證明點A、B、C在同一直線上呢?”
(分析問題)一時間,大家議論開了. 同學甲說:“可以利用代數(shù)方法,建立平面直角坐標系,利用函數(shù)的知識解決”,同學乙說:“也可以利用幾何方法…”同學丙說:“我還有其他的幾何證法”……
(解決問題)請你用兩種方法解決問題
方法一(用代數(shù)方法):
方法二(用幾何方法):
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com