精英家教網(wǎng)填空,完成下列證明過程.
如圖,如果△ABC≌△A1B1C1,AD平分∠BAC,A1D1平分∠B1A1C1,那么AD=A1D1
證明:∵△ABC≌△A1B1C1(已知)
 
=
 

∠B=∠B1
 
=∠
 

又∵AD平分∠BAC,A1D1平分∠B1A1C1
∴∠BAD=
1
2
∠BAC∠B1A1D1=
1
2
∠B1A1C1
∴∠
 
=∠
 

在△ABD與△A1B1D1
 

∴△ABD≌△A1B1D1
 

∴AD=A1D1
 
分析:由△ABC≌△A1B1C1,可得AB=A1B1,∠B=∠B1,∠BAC=∠B1A1C1,又由AD平分∠BAC,A1D1平分∠B1A1C1,可得∠BAD=∠B1A1D1,所以,△ABD≌△A1B1D1(ASA),即可證得;
解答:證明:∵△ABC≌△A1B1C1,
∴AB=A1B1,∠B=∠B1,∠BAC=∠B1A1C1
又∵AD平分∠BAC,A1D1平分∠B1A1C1
∴∠BAD=
1
2
∠BAC,∠B1A1D1=
1
2
∠B1A1C1,
∴∠BAD=∠B1A1D1,
在△ABD與△A1B1D1
∠B=∠B1
AB=A1B1
∠BAD=∠B1A1D1

∴△ABD≌△A1B1D1(ASA),
∴AD=A1D1(全等三角形的對應邊相等).
點評:本題主要考查了全等三角形的判定與性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具,在判定三角形全等時,關鍵是選擇恰當?shù)呐卸l件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B,
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE(
三角形的一個外角等于與它不相鄰兩個內(nèi)角的和
),
又∵∠DEF=∠B(已知),
∴∠
BDE
=∠
CEF
(等式性質(zhì)).
在△EBD與△FCE中,
BDE
=∠
CEF
(已證),
BD
=
CE
(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的對應邊相等).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE
三角形的一個外角等于與它不相鄰兩個內(nèi)角的和
三角形的一個外角等于與它不相鄰兩個內(nèi)角的和
,
又∵∠DEF=∠B(已知),∴∠
BDE
BDE
=∠
CEF
CEF
(等式性質(zhì)).
在△EBD與△FCE中,
BDE
BDE
=∠
CEF
CEF
(已證),
BD
BD
=
CE
CE
(已知),∠B=∠C(已知),
∴△EBD≌△FCE
ASA
ASA

∴ED=EF
全等三角形對應邊相等
全等三角形對應邊相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B,
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE(________),
又∵∠DEF=∠B(已知),
∴∠________=∠________(等式性質(zhì)).
在△EBD與△FCE中,
∠________=∠________(已證),
________=________(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的對應邊相等).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE________,
又∵∠DEF=∠B(已知),∴∠________=∠________(等式性質(zhì)).
在△EBD與△FCE中,
∠________=∠________(已證),________=________(已知),∠B=∠C(已知),
∴△EBD≌△FCE________.
∴ED=EF________.

查看答案和解析>>

同步練習冊答案