如圖,已知拋物線y=x2+x+2交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B、C的坐標(biāo).
(2)若點(diǎn)M為拋物線的頂點(diǎn),連接BC、CM、BM,求△BCM的面積.
(3)連接AC,在x軸上是否存在點(diǎn)P使△ACP為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)令y=0求A、B兩點(diǎn)橫坐標(biāo),令x=0求C點(diǎn)縱坐標(biāo);
(2)由拋物線頂點(diǎn)坐標(biāo)公式求M點(diǎn)坐標(biāo),過M作MN垂直y軸于N,根據(jù)S△BCM=SOBMN-S△OBC-S△MNC求△BCM的面積;
(3)根據(jù)AC為腰,AC為底兩種情況求P點(diǎn)坐標(biāo).當(dāng)AC為腰時(shí),分為A為等腰三角形的頂點(diǎn),C為等腰三角形的頂點(diǎn),兩種情況求P點(diǎn)坐標(biāo);當(dāng)AC為底時(shí),作線段AC的垂直平分線交x軸于P點(diǎn),利用三角形相似求OP.
解答:解:(1)令x2+x+2=0,解得x1=-1,x2=5.
令x=0,則y=2,
所以A、B、C的坐標(biāo)分別是A(-1,0)、B(5,0)、C(0,2);

(2)頂點(diǎn)M的坐標(biāo)是M(2,).
過M作MN垂直y軸于N,
所以S△BCM=SOBMN-S△OBC-S△MNC
=(2+5)×-×5×2-×(-2)×2
=6;

(3)當(dāng)以AC為腰時(shí),在x軸上有兩個(gè)點(diǎn)分別為P1,P2,易求AC=,
則0P1=1+,OP2=-1,
所以P1,P2的坐標(biāo)分別是P1(-1-,0),P2-1,0);
當(dāng)以AC為底時(shí),作AC的垂直平分線交x軸于P3,交y軸于F,垂足為E,
CE=,
易證△CEF∽△COA,
所以
所以,
CF=,OF=OC-CF=2-=,
EF===
又∵△CEF∽△P3OF,
所以,,
求得OP3=
則P3的坐標(biāo)為P3,0).
AC=PC,則P4(1,0).
所以存在P1、P2、P3、P4四個(gè)點(diǎn),它們的坐標(biāo)分別是P1(-1-,0)、P2-1,0)、P3,0)、P4(1,0).
點(diǎn)評:本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是根據(jù)二次函數(shù)的解析式求拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo),根據(jù)等腰三角形的性質(zhì),分類討論,求滿足條件的P點(diǎn)坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案