【題目】⊙O是△ABC的外接圓,AB是直徑,過 的中點P作⊙O的直徑PG,與弦BC相交于點D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;
(2)如圖2,過點P作AB的垂線,垂足為點H,連接DH,求證:DH∥AG;
(3)如圖3,連接PA,延長HD分別與PA、PC相交于點K、F,已知FK=2,△ODH的面積為2 ,求AC的長.
【答案】
(1)證明:∵過 的中點P作⊙O的直徑PG,
∴CP=PB,
∵AB,PG是相交的直徑,
∴AG=PB,
∴AG=CP
(2)證明:如圖 2,連接BG
∵AB、PG都是⊙O的直徑,
∴四邊形AGBP是矩形,
∴AG∥PB,AG=PB,
∵P是弧BC的中點,
∴PC=BC=AG,
∴弧AG=弧CP,
∴∠APG=∠CAP,
∴AC∥PG,
∴PG⊥BC,
∵PH⊥AB,
∴∠BOD=90°=∠POH,
在△BOD和△POH中,
,
∴△BOD≌△POH,
∴OD=OH,
∴∠ODH= (180°﹣∠BOP)=∠OPB,
∴DH∥PB∥AG
(3)解:如圖3,作CM⊥AP于M,ON⊥DH于N,
∴∠HON= ∠BOP= ∠COP=∠CAP,
∴△HON∽△CAM,
∴ ,
作PQ⊥AC于Q,
∴四邊形CDPQ是矩形,
△APH與△APQ關于AP對稱,
∴HQ⊥AP,
由(1)有:HK⊥AP,
∴點K在HQ上,
∴CK=PK,
∴PK是△CMP的中位線,
∴CM=2FK=4,MF=PF,
∵CM⊥AP,HK⊥AP,
∴CM∥HK,
∴∠BCM+∠CDH=180°,
∵∠BCM=∠CAP=∠BAP=∠PHK=∠MHK,
∴∠MHK+∠CDH=180°,
∴四邊形CDHM是平行四邊形,
∴DH=CM=4,DN=HN=2,
∵S△ODH= DH×ON= ×4×ON=2 ,
∴ON= ,
∴OH= =5,
∴AC= =10
【解析】(1)利用等弧所對的圓周角相等即可求解;(2)利用等弧所對的圓周角相等,得到角相等∠APG=∠CAP,判斷出△BOD≌△POH,再得到角相等,從而判斷出線平行;(3)由三角形相似,得出比例式,△HON∽△CAM, ,再判斷出四邊形CDHM是平行四邊形,最后經(jīng)過計算即可求解.
科目:初中數(shù)學 來源: 題型:
【題目】某地農(nóng)民一直保持著冬種油菜的習慣,利用農(nóng)閑冬種一季油菜.該地農(nóng)業(yè)部門對2017年的油菜籽生產(chǎn)成本、市場價格、種植面積和產(chǎn)量等進行了調(diào)查統(tǒng)計,并繪制了如下的統(tǒng)計表與統(tǒng)計圖(如圖):
每畝生產(chǎn)成本 | 每畝產(chǎn)量 | 油菜籽市場價格 | 種植面積 |
110元 | 130千克 | 3元/千克 | 500 000畝 |
請根據(jù)以上信息解答下列問題:
(1)種植油菜每畝的種子成本是多少元?
(2)農(nóng)民冬種油菜每畝獲利多少元?
(3)2017年該地全縣農(nóng)民冬種油菜的總獲利是多少元?(結果用科學記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠C=90°,D為AC上一點,連接BD,將線段BD繞點D順時針旋轉(zhuǎn)90°得到線段DE,DE與AB相交于點F,過點D作DG⊥AB,垂足為點G.若EF=5,CD=2 ,則△BDG的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形中,是上一動點,點在的延長線上,且平分,交于點.
(1)如圖①,連接,求證: ;
(2)如圖②,當時,求證: ;
(3)如圖③,當時,若平分,求證: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在新晚報舉辦的“萬人戶外徒步活動”中,為統(tǒng)計參加活動人員的年齡情況,從參加人員中隨機抽取了若干人的年齡作為樣本,進行數(shù)據(jù)統(tǒng)計,制成如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分).
(1)本次活動統(tǒng)計的樣本容量是多少?
(2)求本次活動中70歲以上的人數(shù),并補全條形統(tǒng)計圖;
(3)本次參加活動的總?cè)藬?shù)約為12000人,請你估算參加活動人數(shù)最多的年齡段的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點D、E在AB上,將△ACD、△BCE分別沿CD、CE翻折,點A、B分別落在點A′、B′的位置,再將△A′CD、△B′CE分別沿A′C、B′C翻折,點D與點E恰好重合于點O,則∠A′OB′的度數(shù)是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥CD,且AB=CD.E、F是AD上兩點,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,則AD的長為( )
A. a+cB. b+cC. a﹣b+cD. a+b﹣c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點D,且OD=3,則△ABC的面積是( )
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com