【題目】如圖,O是直線AB上一點,OD平分∠BOC,∠COE90°.若∠AOC40°

1)求∠DOE的度數(shù);

2)圖中互為余角的角有 

【答案】1)∠DOE20°;(2)圖中互為余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE.

【解析】

1)利用平角的定義求得∠BOC,然后利用角平分線的性質(zhì)求得∠COD,再利用余角的定義即可求得結(jié)論;

2)利用角平分線的性質(zhì)及余角的定義和性質(zhì)即可找到.

1)∵∠AOC40°,

∴∠BOC180°﹣∠AOC140°,

OD平分∠BOC,

∴∠CODBOC70°,

∵∠COE90°,

∴∠DOE90°﹣70°=20°.

2)∵∠COE90°,

∴∠AOC+BOE90°,∠COD+DOE90°,

OD平分∠BOC

∴∠COD=∠BOD,

∴∠BOD+DOE90°,

∴圖中互為余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵市民節(jié)約用水,某市自來水公司對每戶用水量進行了分段計費,每戶每月用水量在規(guī)定噸數(shù)以下的收費標準相同,規(guī)定噸數(shù)以上的超過部分收費相同.如表是小明家1-4

用水量和交費情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量()

6

7

12

15

水費()

12

14

28

37

1)該市規(guī)定用水量為 噸,規(guī)定用量內(nèi)的收費標準是 /噸,超過部分的收費標準是 /噸。

2)若小明家5月份用水20噸,則應(yīng)繳水費 元。

3)若小明家6月份應(yīng)交水費46元,則6月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.

(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;

(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以ECCF為鄰邊作平行四邊形ECFG

(1)如圖1,證明平行四邊形ECFG為菱形;

(2)如圖2,若∠ABC=90°,MEF的中點,求∠BDM的度數(shù);

(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8個同樣大小的小正方體搭成如圖所示的幾何體,請按照要求解答下列問題:

1)從正面、左面、上面觀察如圖所示的幾何體,分別畫出所看到的幾何體的形狀圖;

2)如果在這個幾何體上再擺放一個相同的小正方體,并保持這個幾何體從上面看和從左面看到的形狀圖不變.

①添加小正方體的方法共有_________種;

②請畫出兩種添加小正方體后,從正面看到的幾何體的形狀圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知坐標平面內(nèi)的三個點A13),B3,1),O00),

1)請畫出把△ABO向下平移5個單位后得到的△A1B1O1的圖形;

2)請畫出將△ABO繞點O順時針旋轉(zhuǎn)90°后得到的△A2B2O2,并寫出點A的對應(yīng)點A2的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,以矩形的頂點為原點,所在直線為軸,所在直線為軸,建立平面直角坐標系,頂點為點的拋物線經(jīng)過點,點.

1)寫出拋物線的對稱軸及點的坐標,

2)將矩形繞點順時針旋轉(zhuǎn)得到矩形.

①當點恰好落在的延長線上時,如圖2,求點的坐標.

②在旋轉(zhuǎn)過程中,直線與直線分別與拋物線的對稱軸相交于點,點.若,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,AC平分∠DAB

(1)求證:四邊形ABCD是菱形

(2)AC=16,BD=12,試求點OAB的距離.

查看答案和解析>>

同步練習冊答案