【題目】如圖,在平面直角坐標系中,矩形的邊的邊分別在軸,軸正半軸上,, 點從點出發(fā)以每秒2個單位長度的速度向終點運動,點不與點重合以為邊在上方作正方形,設(shè)正方形與的重疊部分圖形的面積為(平方單位),點的運動時間為(秒).
(1)直線所在直線的解析式是__________________________.
(2)當點落在線段上時,求的值.
(3)在點運動的過程中,求與之間的函數(shù)關(guān)系式;
(4)設(shè)邊的中點為,點關(guān)于點的對稱點為,以為邊在上方作正方形當正方形與重疊部分圖形為三角形時,直接寫出的取值范圍.
(提示:根據(jù)點的運動,可在草紙上畫出正方形與重疊部分圖形為不同圖形時的臨界狀態(tài)去研究.)
【答案】(1); (2) ;(3) ;(4) 正方形KC′MN與△ABC重疊部分圖形為三角形,t的取值范圍為:和
【解析】
(1)根據(jù)OA=6,OC=8求出點A、C的坐標為(0,6)和(8,0),用待定系數(shù)法可求得直線AC的解析式;
(2)點E在AC上時,四邊形OIPEF是正方形得EP∥AO,可證明△CPE∽△COA,由相似三角形的性質(zhì)即可求出t的值;
(3)點P運動過程中正方形OPEF與△ABC的重疊部分圖形的形狀不同,分3種情況考慮;
(4)根據(jù)點P的運動,先找出正方形KC′MN與△ABC重疊部分圖形為三角形時的臨界點,再綜合求t的取值范圍.
(1)設(shè)直線AC的解析式為,
如圖1所示:
∵OA=6,OC=8,
∴點A、C的坐標分別為(0,6),(8,0),
將點A、C兩點的坐標代入直線AC的解析式中得
,
解得:,
∴直線AC的解析式為:;
(2)當點E落在線段AC上時,如圖2所示:
∵OC=8,P從點O出發(fā)以每秒2個單位長度的速度向點C運動,
∴,,,
∵EP∥AO,
∴△CPE∽△COA,
∴,即,
解得:;
(3)點P運動過程中正方形OPEF與△ABC的重疊部分圖形的形狀不同
分3種情況考慮,
①當時,如圖3(a)所示,
∵
∴;
②當時,如圖3(b)所示,
∵,
∴NP∥BC,FM∥AB,
∴△CNP∽△CAO∽△MAF,
∴,
∴,;
,
③當時,如圖3(c)所示,
∵PQ∥AO,
∴△CPQ∽△COA,
∴,
∴,
=+12t;
(4)根據(jù)點P的運動,畫出正方形KC′MN與△ABC重疊部分圖形為三角形時的臨界點,
①當P點開始向右移動時,正方形KC′MN與△ABC重疊部分圖形為三角形,達到圖4(a)所示情況不再為三角形,
根據(jù)題意:KC'=KN,
∵點K為線段OC的中點,KN∥AO,
∴KN為△AOC的中位線,
∴KC'=KN=AO=×6=3,
CC'=KC'+KC=3+4=7,
∴,
解得:,
即;
②當點P運動到圖4(b)所示情況時,正方形KC′MN與△ABC重疊部分圖形開始為三角形.
∵,
∴,
∴,
∴CC'=,MC'=,
∴,
解得:;
③當點P運動到圖4(c)所示情況,正方形KC′MN與△ABC重疊部分圖形為三角形,點P再運動到點C時不再為三角形.
∵點K為線段OC的中點,KN∥AO,
∴KN為△AOC的中位線,
∴KC'=KN=AO=3,CC'=KC-KC',
∴PC=CC′=,
解得:,
綜合所述:正方形KC′MN與△ABC重疊部分圖形為三角形,t的取值范圍為:和.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC、BD交于點O,BD⊥AD于點D,將△ABD沿BD翻折得到△EBD,連接EC、EB.
(1)求證:四邊形DBCE是矩形;
(2)若BD=4,AD=3,求點O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點M、N,若EG=4,GF=6,BM= ,則MN的長為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了對一顆傾斜的古杉樹AB進行保護,需測量其長度:在地面上選取一點C,測得∠ACB=45°,AC=24m,∠BAC=66.5°,(參考數(shù)據(jù): ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).則這顆古杉樹AB的長約為( )
A.7.27
B.16.70
C.17.70
D.18.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車同時從地出發(fā)前往地.甲車中途因故停車一段時間,之后以原速繼續(xù)行駛,與乙車同時到達地.下圖是甲、乙兩車離開地的路程與時間之間的函數(shù)圖象.
(1)甲車每小時行駛_________千米,的值為________.
(2)求甲車再次行駛過程中與之間的函數(shù)關(guān)系式.
(3)甲、乙兩車離開地的路程差為8千米時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達到60 ℃后,再進行操作.設(shè)該材料溫度為y(℃),從加熱開始計算的時間為x(min).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃.
(1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗想用一塊面積為的正方形紙片,沿著邊的方向裁出一塊面積為的長方形紙片,使它的長寬之比為4:3,他不知道能否裁的出來,正在發(fā)愁,請你用所學(xué)知識幫小麗分析,能否裁出符合要求的紙片.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用960元購進一批服裝,并以每件46元的價格全部售完,由于服裝暢銷,服裝店又用2220元,再次以比第一次進價多5元的價格購進服裝,數(shù)量是第一次購進服裝的2倍,仍以每件46元的價格出售,賣了部分后,為了加快資金周轉(zhuǎn),服裝店將剩余的20件以售價的九折全部出售.問:
(1)該服裝店第一次購買了此種服裝多少件?
(2)兩次出售服裝共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于點A1,
(1)分別計算:當∠A分別為700、800時,求∠A1的度數(shù).
(2)根據(jù)(1)中的計算結(jié)果,寫出∠A與∠A1之間的數(shù)量關(guān)系___________________.
(3)∠A1BC的角平分線與∠A1CD的角平分線交于點A2,∠A2BC的角平分線與∠A2CD的角平分線交于點A3,如此繼續(xù)下去可得A4,…,∠An,請寫出∠A5與∠A的數(shù)量關(guān)系_________________.
(4)如圖2,若E為BA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當E滑動時,有下面兩個結(jié)論:①∠Q+∠A1的值為定值;②∠D-∠A1的值為定值.
其中有且只有一個是正確的,請寫出正確的結(jié)論,并求出其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com