【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),ADCD,(點(diǎn)D在⊙O外)AC平分∠BAD

(1)求證:CD是⊙O的切線;

(2)若DC、AB的延長線相交于點(diǎn)E,且DE=12,AD=9,求BE的長.

【答案】1)見解析(2

【解析】試題分析:(1)連接OC,根據(jù)條件先證明OC∥AD,然后證出OC⊥CD即可;(2)先利用勾股定理求出AE的長,再根據(jù)條件證明△ECO∽△EDA,然后利用對應(yīng)邊成比例求出OC的長,再根據(jù)BE=AE﹣2OC計(jì)算即可.

試題解析:(1)證明:連接OC,

∵AC平分∠DAB,

∴∠DAC=∠CAB,

∵OC=OA,

∴∠OAC=∠OCA,

∴∠DAC=∠OCA

∴OC∥AD,

∵AD⊥CD

∴OC⊥CD,

∵OC⊙O半徑,

∴CD⊙O的切線.

2)解:在Rt△ADE中,由勾股定理得:AE==15

∵OC∥AD,

∴△ECO∽△EDA,

解得:OC=,

∴BE=AE﹣2OC=15﹣2×=,

答:BE的長是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A(a,b)和點(diǎn)B關(guān)于x軸對稱,而點(diǎn)B與點(diǎn)C(2,3)關(guān)于y軸對稱,那么a=__,b=__,點(diǎn)A和點(diǎn)C的位置關(guān)系是__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地球上的海洋面積約為361000000km2 , 這個數(shù)用科學(xué)記數(shù)法表示為( )km2
A.361×106
B.36.1×107
C.3.61×108
D.0.361×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2.

(1)DF∥AC嗎,為什么?

(2)DE與AF的位置關(guān)系又如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,直線AB,CD相交于點(diǎn)O OE平分∠BOD,OF平分∠COE,AODBOE=4:1,求∠AOF的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于O點(diǎn),OMAB.

1)若∠1=2,求∠NOD

2)若∠1=BOC,求∠AOC與∠MOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,直線ABCD相交于點(diǎn)O,OP是∠BOC的平分線,OEAB,OFCD,

(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①____________;____________

(2)如果∠AOD40°,則①∠BOC_______;OP是∠BOC的平分線,所以∠COP______度;

③求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)初中組織了“英語手抄報(bào)”征集活動,現(xiàn)從中隨機(jī)抽取部分作品,按A、BC、D四個等級進(jìn)行評價,并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)抽取了_____份作品;

(2)此次抽取的作品中等級為B的作品有______份,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共征集到600份作品,請估計(jì)等級為A的作品約有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°∠MAN繞點(diǎn)A順時針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點(diǎn)M,N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN(如圖1),易證BM+DN=MN

(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN(如圖2),線段BM,DNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時,線段BM,DNMN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

同步練習(xí)冊答案