如圖,拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)c(0,3).
(1)求此拋物線所對應(yīng)函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,在其對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PCD為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(1)拋物線與x軸交于點(diǎn)(-1,0)和(3,0),
設(shè)表達(dá)式為y=a(x+1)(x-3),
又點(diǎn)(0,3)在拋物線上,則3=a×1×(-3),
∴a=-l
故所求的表達(dá)式為:y=-(x+1)(x-3),即y=-x2+2x+3.

(2)存在.
由y=-x2+2x+3=-(x-1)2+4知,D點(diǎn)坐標(biāo)為(1,4),對稱軸為x=1,
①若以CD為底邊,則PC=PD.設(shè)P點(diǎn)坐標(biāo)為(a,b),
由勾股定理,得:a2+(3-b)2=(a-1)2+(4-b)2,
即b=4-a.
又點(diǎn)P(a,b)在拋物線上,b=-a2+2a+3,
則4-a=-a2+2a+3.整理,得a2-3a+1=0,
解,得a1=
3+
5
2
>1,a2=
3-
5
2
<1
(不合題意,舍去)
a=
3+
5
2
,
b=4-
3+
5
2
=
5-
5
2
,
P(
3+
5
2
5-
5
2
);
②若以CD為一腰,因點(diǎn)P在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點(diǎn)P與點(diǎn)C關(guān)于直線x=1對稱,
此時點(diǎn)P坐標(biāo)為(2,3),
綜上所述,符合條件的點(diǎn)P坐標(biāo)為(
3+
5
2
,
5-
5
2
)或(2,3).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,其中A(1,0),C(0,-3).
(1)求拋物線的解析式;
(2)求出該拋物線的對稱軸及頂點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在拋物線上運(yùn)動(點(diǎn)P異于點(diǎn)D),當(dāng)△PAB的面積和△DAB面積相等時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形ABCD的邊長AB=3,AD=2,將此矩形放在平面直角坐標(biāo)系中,使AB在x軸的正半軸上,點(diǎn)A在點(diǎn)B的左側(cè),另兩個頂點(diǎn)都在第一象限,且直線y=
3
2
x-1
經(jīng)過這兩個頂點(diǎn)中的一個.
(1)求A、B、C、D四點(diǎn)坐標(biāo);
(2)以AB為直徑作⊙M,記過A、B兩點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn)為P.
①若P點(diǎn)在⊙M和矩形內(nèi),求a的取值范圍;
②過點(diǎn)C作CF切⊙M于E,交AD于F,當(dāng)PFAB時,求拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則這個二次函數(shù)的表達(dá)式是y=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,-3),且頂點(diǎn)P的坐標(biāo)為(1,-4),
(1)求這個函數(shù)的關(guān)系式;
(2)在平面直角坐標(biāo)系中,畫出它的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為4,點(diǎn)P是AB上不與A、B重合的任意一點(diǎn),作PQ⊥DP,Q在BC上,設(shè)AP=x,BQ=y,
(1)求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo),并作出大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)位于x軸下方,它到x軸的距離為4,下表是x與y的對應(yīng)值表:
x______0______2______
y0-3-4-30
(1)求出二次函數(shù)的解析式;
(2)將表中的空白處填寫完整;
(3)在右邊的坐標(biāo)系中畫出y=ax2+bx+c的圖象;
(4)根據(jù)圖象回答:當(dāng)x為何值時,函數(shù)y=ax2+bx+c的值大于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線y=-
1
2
x2+bx+c經(jīng)過矩形ABCO的頂點(diǎn)B、C,D為BC的中點(diǎn),直線AD與y軸交于E點(diǎn),與拋物線y=-
1
2
x2+bx+c交于第四象限的F點(diǎn).
(1)求該拋物線解析式與F點(diǎn)坐標(biāo);
(2)如圖(2),動點(diǎn)P從點(diǎn)C出發(fā),沿線段CB以每秒1個單位長度的速度向終點(diǎn)B運(yùn)動;同時,動點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒
13
2
個單位長度的速度向終點(diǎn)E運(yùn)動.過點(diǎn)P作PH⊥OA,垂足為H,連接MP,MH.設(shè)點(diǎn)P的運(yùn)動時間為t秒.
①問EP+PH+HF是否有最小值?如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,請直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時的銷售單價不低于成本價,又不高于每件70元,試銷中銷售量y(件)與銷售單價x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時,P的值最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案