精英家教網 > 初中數學 > 題目詳情
如圖,⊙O1和⊙O2相交于A、B兩點,⊙O1的弦AC與⊙O2相切,P是
AmC
的中點,PA精英家教網、PB的延長線分別交⊙O2于點E、F,PB交AC于D.
(1)求證:PC∥AF;
(2)求證:AE•PC=BE•PD;
(3)若A是PE的中點,則⊙O1與⊙O2是否是等圓?若不是等圓,請說明理由;若是等圓,請給出證明.
分析:(1)欲證PC∥AF,可以證明∠AFB=∠CPB.
(2)欲證AE•PC=BE•PD,即AE:BE=PD:PC,可以證明∠FPC=∠AEB,∠PDC=∠EAB,從而證明△PCD∽△EBA得出;
(3)⊙O1與⊙O2是否是等圓,即直徑是否相等.A是PE的中點,可以證明PB,EB分別是⊙O1,⊙O2的直徑,它們所在的直角三角形中兩直角邊分別相等,得出PB=BE,⊙O1與⊙O2是等圓.
解答:精英家教網(1)證明:連接AB,PC.
∵AC與⊙O2相切,∴∠CAB=∠AFB.
∵∠CPB=∠CAB,∴∠AFB=∠CPB.
∴PC∥AF;

(2)證明:連BE,BC,
∵PC∥AF,∴∠CPD=∠AFP.
∵∠AFB=∠AEB,∴∠FPC=∠AEB.
∵∠PDC=∠ACB+∠CBD,∠EAB=∠APD+∠ABP,∠ACB=∠APD,∠CBD=∠ABP,
∴∠PDC=∠EAB.
∴△PCD∽△EBA.
∴PC:PD=EB:EA,
∴AE•PC=BE•PD;

(3)解:AC與⊙O2相切,∠CAF=∠E,P是
AmC
的中點,
∴∠PAC=∠PCA.
∵PC∥AF,∴∠PCA=∠CAF.
∴∠PAC=∠E.
∴AC∥EF.
∵A是PE的中點,∴PA=EA.
∴AD=CD.
∴四邊形PCFA是平行四邊形.
∴AF=PC,PA=AE=AF.
∴∠BFE=90°.∴∠BAE=90°=∠BAP.
∴PB,EB分別是⊙O1,⊙O2的直徑.
∴PB=BE,⊙O1與⊙O2是等圓.
點評:考查了平行線的判斷,相似三角形的判定和性質,圓的知識.此題是一個大綜合題,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、已知:如圖,⊙O1和⊙O2相交于A、B兩點,動點P在⊙O2上,且在⊙1外,直線PA、PB分別交⊙O1于C、D,問:⊙O1的弦CD的長是否隨點P的運動而發(fā)生變化?如果發(fā)生變化,請你確定CD最長和最短時P的位置,如果不發(fā)生變化,請你給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,⊙O1和⊙O2相交于A、B兩點,過B點作⊙O1的切線交⊙O2于D點,連接DA并延精英家教網長⊙O1相交于C點,連接BC,過A點作AE∥BC與⊙O相交于E點,與BD相交于F點.
(1)求證:EF•BC=DE•AC;
(2)若AD=3,AC=1,AF=
3
,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、如圖.⊙O1和⊙O2外切于點A,BC是⊙O1和⊙O2的公切線,B、C為切點,求證:AB⊥AC.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2001•黃岡)已知,如圖,⊙O1和⊙O2內切于點P,過點P的直線交⊙O1于點D,交⊙O2于點E;DA與⊙O2相切,切點為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長.

查看答案和解析>>

同步練習冊答案