【題目】某農(nóng)科所對甲、乙兩種小麥各選用10塊面積相同的試驗田進行種植試驗,它們的平均畝產(chǎn)量分別是=610千克, =609千克,畝產(chǎn)量的方差分別是=29.6 =2.則關(guān)于兩種小麥推廣種植的合理決策是( )

A. 甲的平均畝產(chǎn)量較高,應(yīng)推廣甲

B. 甲、乙的平均畝產(chǎn)量相差不多,均可推廣

C. 甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣甲

D. 甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣乙

【答案】D

【解析】分析: 本題需先根據(jù)甲、乙畝產(chǎn)量的平均數(shù)得出甲、乙的平均畝產(chǎn)量相差不多,再根據(jù)甲、乙的平均畝產(chǎn)量的方差即可得出乙的畝產(chǎn)量比較穩(wěn)定,從而求出正確答案.

詳解:=610千克, =609千克,

∴甲、乙的平均畝產(chǎn)量相差不多

∵畝產(chǎn)量的方差分別是=29.6, =2.

∴乙的畝產(chǎn)量比較穩(wěn)定.

故選D.

點睛:

本題主要考查了方差和平均數(shù)的有關(guān)知識,在解題時要能根據(jù)方差和平均數(shù)代表的含義得出正確答案是本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1分別與x軸、y軸交于點B、C,且與直線l2交于點A.

(1)求出點A的坐標

(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的解析式

(3)在(2)的條件下,設(shè)P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O(shè)、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+4的圖象與x軸交于兩點A、B,與y軸交于點C,且A﹣1,0)、B4,0).

1)求此二次函數(shù)的表達式;

2)如圖1,拋物線的對稱軸mx軸交于點E,CDm,垂足為D,點F0),動點N在線段DE上運動,連接CF、CN、FN,若以點CD、N為頂點的三角形與FEN相似,求點N的坐標;

3)如圖2,點M在拋物線上,且點M的橫坐標是1,將射線MA繞點M逆時針旋轉(zhuǎn)45°,交拋物線于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形紙片ABCD的兩邊ABBC=21,過點B折疊紙片,使點A落在邊CD上的點F處,折痕為BE.若AB的長為4,則EF的長為( 。

A. 8-4B. 2C. 4 6D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點A(a ,2)是直線y=x上一點,以A為圓心,2為半徑作⊙A,若P(x,y)是第一象限內(nèi)⊙A上任意一點,則的最小值為(

A. 1 B. C. —1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】福建省教育廳日前發(fā)布文件,從2019年開始,體育成績將按一定的原始分計入中考總分。某校為適應(yīng)新的中考要求,決定為體育組添置一批體育器材。學(xué)校準備在網(wǎng)上訂購一批某品牌足球和跳繩,在查閱天貓網(wǎng)店后發(fā)現(xiàn)足球每個定價150元,跳繩每條定價30元.現(xiàn)有A、B兩家網(wǎng)店均提供包郵服務(wù),并提出了各自的優(yōu)惠方案.

A網(wǎng)店:買一個足球送一條跳繩;

B網(wǎng)店:足球和跳繩都按定價的90%付款.

已知要購買足球40個,跳繩x條(x>40)

(1)若在A網(wǎng)店購買,需付款 元(用含x的代數(shù)式表示).

若在B網(wǎng)店購買,需付款 元(用含x的代數(shù)式表示).

(2)若x=100時,通過計算說明此時在哪家網(wǎng)店購買較為合算?

(3)當x=100時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,

并計算需付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F分別是AC,BC上的點,且滿足DEEF,垂足為點E,連接DF

1)求∠EDF= (填度數(shù));

2)延長DEAB于點G,連接FG,如圖2,猜想AG,GF,FC三者的數(shù)量關(guān)系,并給出證明;

3)①若AB=6GAB的中點,求△BFG的面積;

②設(shè)AG=a,CF=b△BFG的面積記為S,試確定Sa,b的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x的圖象交于點A、B,點B的橫坐標是4.點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方.

(1)若點P的坐標是(1,4),直接寫出k的值和PAB的面積;

(2)設(shè)直線PA、PBx軸分別交于點M、N,求證:PMN是等腰三角形;

(3)設(shè)點Q是反比例函數(shù)圖象上位于P、B之間的動點(與點P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段 AC=4,線段BC繞點C旋轉(zhuǎn),且BC=6,連結(jié)AB,以AB為邊作正方形ADEB,連結(jié)CD.

(1)若∠ACB=90°,則AB的值是____;

(2)線段CD長的最大值是____

查看答案和解析>>

同步練習冊答案