如圖,直角坐標(biāo)系中Rt△ABO,其頂點(diǎn)為A(0, 1)、B(2, 0)、O(0, 0),將此三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到Rt△A′B′O.

(1)一拋物線經(jīng)過(guò)點(diǎn)A′、B′、B,求該拋物線的解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請(qǐng)求出P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質(zhì).
(1)y=-x2+x+2;(2)P(1,2);(4)四邊形PB′A′B為等腰梯形,答案不唯一,①等腰梯形同一底上的兩個(gè)內(nèi)角相等;②等腰梯形對(duì)角線相等.

試題分析:(1)利用旋轉(zhuǎn)的性質(zhì)得出A′(-1,0),B′(0,2),再利用待定系數(shù)法求二次函數(shù)解析式即可;
(2)利用S四邊形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假設(shè)四邊形PB′A′B的面積是△A′B′O面積的4倍,得出一元二次方程,得出P點(diǎn)坐標(biāo)即可;
(3)利用P點(diǎn)坐標(biāo)以及B點(diǎn)坐標(biāo)即可得出四邊形PB′A′B為等腰梯形,利用等腰梯形性質(zhì)得出答案即可.
試題解析:(1)(1)△A′B′O是由△ABO繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的,
又A(0,1),B(2,0),O(0,0),
∴A′(-1,0),B′(0,2)
設(shè)拋物線的解析式為:y=ax2+bx+c(a≠0),
∵拋物線經(jīng)過(guò)點(diǎn)A′、B′、B,
,解得:,
∴滿足條件的拋物線的解析式為y=-x2+x+2.
(2)∵P為第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),
設(shè)P(x,y),則x>0,y>0,P點(diǎn)坐標(biāo)滿足y=-x2+x+2.
連接PB,PO,PB′,

∴S四邊形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y=x+(-x2+x+2)+1=-x2+2x+3.
∵A′O=1,B′O=2,∴△A′B′O面積為:×1×2=1,
假設(shè)四邊形PB′A′B的面積是△A′B′O面積的4倍,則
4=-x2+2x+3,
即x2-2x+1=0,
解得:x1=x2=1,
此時(shí)y=-12+1+2=2,即P(1,2).
∴存在點(diǎn)P(1,2),使四邊形PB′A′B的面積是△A′B′O面積的4倍.
(3)四邊形PB′A′B為等腰梯形,答案不唯一,①等腰梯形同一底上的兩個(gè)內(nèi)角相等;②等腰梯形對(duì)角線相等;③等腰梯形上底與下底平行;④等腰梯形兩腰相等.
考點(diǎn): 二次函數(shù)綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線關(guān)于x軸對(duì)稱的拋物線的解析式是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=-x2向上平移2個(gè)單位后所得的拋物線表達(dá)式是               

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將拋物線向左平移2個(gè)單位,再向上平移2個(gè)單位,得到的拋物線解析式為
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)的圖象如圖所示,給出下列說(shuō)法:

>0;
=0;

④當(dāng)時(shí),函數(shù)y隨x的增大而增大;
⑤當(dāng)時(shí),
其中,正確的說(shuō)法有          .(請(qǐng)寫出所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=-x2-7x+,若自變量x分別取x1,x2,x3,且0<x1<x2<x3,則對(duì)應(yīng)的函數(shù)值y1,y2,y3的大小關(guān)系正確的是(  )
A.y1>y2>y3B.y1<y2<y3
C.y2>y3>y1D.y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)D、E、F分別是邊AB,BC,AC的中點(diǎn),連接DE,DF,動(dòng)點(diǎn)P,Q分別從點(diǎn)A、B同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿AFD的方向運(yùn)動(dòng)到點(diǎn)D停止;點(diǎn)Q沿BC的方向運(yùn)動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)Q作BC的垂線交AB于點(diǎn)M,以點(diǎn)P,M,Q為頂點(diǎn)作平行四邊形PMQN.設(shè)平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規(guī)定線段是面積為0有幾何圖形),點(diǎn)P運(yùn)動(dòng)的時(shí)間為x(s)

(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)F時(shí),CQ=          cm;
(2)在點(diǎn)P從點(diǎn)F運(yùn)動(dòng)到點(diǎn)D的過(guò)程中,某一時(shí)刻,點(diǎn)P落在MQ上,求此時(shí)BQ的長(zhǎng)度;
(3)當(dāng)點(diǎn)P在線段FD上運(yùn)動(dòng)時(shí),求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長(zhǎng)為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是(   ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=(x+5)(2-x)圖像的開(kāi)口方向是________。

查看答案和解析>>

同步練習(xí)冊(cè)答案