【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是 .
【答案】(2n﹣1,2n﹣1)
【解析】解:∵y=x﹣1與x軸交于點(diǎn)A1,
∴A1點(diǎn)坐標(biāo)(1,0),
∵四邊形A1B1C1O是正方形,
∴B1坐標(biāo)(1,1),
∵C1A2∥x軸,
∴A2坐標(biāo)(2,1),
∵四邊形A2B2C2C1是正方形,
∴B2坐標(biāo)(2,3),
∵C2A3∥x軸,
∴A3坐標(biāo)(4,3),
∵四邊形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,
∴Bn坐標(biāo)(2n﹣1,2n﹣1).
故答案為(2n﹣1,2n﹣1).
先求出B1、B2、B3的坐標(biāo),探究規(guī)律后即可解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校實(shí)行學(xué)案式教學(xué),需印制若干份數(shù)學(xué)學(xué)案,印刷廠有甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要.兩種印刷方式的費(fèi)用y(元)與印刷份數(shù)x(份)之間的關(guān)系如圖所示:
(1)填空:甲種收費(fèi)的函數(shù)關(guān)系式是 . 乙種收費(fèi)的函數(shù)關(guān)系式是 .
(2)該校某年級每次需印制100~450(含100和450)份學(xué)案,選擇哪種印刷方式較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,邊長為2,∠B=60°,將△ACD繞點(diǎn)C旋轉(zhuǎn),當(dāng)AC(即A′C)與AB交于一點(diǎn)E,CD(即CD′)同時(shí)與AD交于一點(diǎn)F時(shí),點(diǎn)E,F(xiàn)和點(diǎn)A構(gòu)成△AEF。試探究△AEF的周長是否存在最小值,如果不存在,請說明理由;如果存在,請計(jì)算出△AEF周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.7x-6x=1B.4m+3m2=7m3C.-3(m-n)=-3m+3nD.-(x-y)=-x-y
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y= x與一次函數(shù)y=﹣x+7的圖象交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)x軸上有一點(diǎn)P(a,0),過點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交y= x和y=﹣x+7的圖象于點(diǎn)B、C,連接OC.若BC= OA,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點(diǎn)A(5,0),B(1,4).
(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
,
,
,
,
.
據(jù)此,小明猜想:對于任意銳角,均有.
(Ⅰ)當(dāng)時(shí),驗(yàn)證是否成立;
(Ⅱ)小明的猜想是否成立?若成立,若成立,請給予證明;若不成立,請舉出一個(gè)反例.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com